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In this paper, an evolutionary-based sparse regression algorithm is proposed and applied onto experimental data collected from a
Duffing oscillator setup and numerical simulation data. Our purpose is to identify the Coulomb friction terms as part of the
ordinary differential equation of the system. Correct identification of this nonlinear system using sparse identification is hugely
dependent on selecting the correct form of nonlinearity included in the function library. Consequently, in this work, the
evolutionary-based sparse identification is replacing the need for user knowledge when constructing the library in sparse
identification. Constructing the library based on the data-driven evolutionary approach is an effective way to extend the space of
nonlinear functions, allowing for the sparse regression to be applied on an extensive space of functions. ,e results show that the
method provides an effective algorithm for the purpose of unveiling the physical nature of the Duffing oscillator. In addition, the
robustness of the identification algorithm is investigated for various levels of noise in simulation. ,e proposed method has
possible applications to other nonlinear dynamic systems in mechatronics, robotics, and electronics.

1. Introduction

,e Duffing oscillator is a nonlinear dynamic system with a
considerable number of engineering applications and
presents a key benchmark in nonlinear system analysis. ,e
ordinary differential equation of this system consists of a
cubic nonlinear term which can result in chaotic behavior
and bifurcation. Suppression strategies are required to ac-
commodate for this behavior in flexible robotic manipula-
tors and high-precision mechatronic systems to increase
their efficacy [1]. ,e control performance is however
drastically affected by modeling errors in the system pa-
rameters [2, 3]. Also, the design of flexible manipulators and
high-precision systems depend on the characteristics of the
Duffing oscillator parameter variations [4]. Additionally, the
design of harvesting devices from vibrations relies on the
Duffing-type dynamic equations and when characterized
well can be used as a tool for further analysis [5].

,is work focuses on identifying the nonlinear ordinary
differential equation of the Duffing system that consists of
difficult to discover friction terms. Nonlinear system iden-
tification is a vast research field.,e progress of this research
area can be followed via several surveys including earlier
works by Billings [6] and Mehra [7] as well as more recent
studies [8–10].

In cases that the nonlinear model structure can be ob-
tained from the first principles and is a priori known, the
identification problem boils down to parameter estimation.
Many works have been done in this area such as [11] where
the physical parameter values are directly estimated using
measured data. In many works such as [12–14], the least
squares method is used in order to estimate the parameter
values. Others report the usage of genetic programming for
the same purpose [15, 16].

Parameter estimation using a fixed model structure
based on captured data has been previously applied on
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Duffing oscillator-type systems. In [17], the parameters of a
numerical fractional-order Duffing system have been
identified using the sequential differential evolution
method. Other algorithms such as nonlinear subspace
identification method, particle swarm optimization, Vol-
terra–Wiener-based model, and Wiener-type cascade
model were used to numerically estimate the parameters of
Duffing-type systems [18–21]. In a more recent attempt,
authors in [22] have used a tailored sequential Monte Carlo
algorithm within a Markov Chain Monte Carlo (MCMC)
scheme to identify the parameters of Duffing in a Bayesian
manner.

Alternatively, when the model structure is not a priori
known, the form of the model needs to be discovered.
Different black-box model structures can be considered to
form the system equations. In [23], a modeling method for
nonlinear systems using polynomial nonlinear state space
equations was introduced. Furthermore, NARMAX models
have been used in [24, 25] to represent nonlinear systems.
Genetic algorithm and genetic programming have been also
introduced in this field. In [26], genetic programming is used
in a multiobjective fashion to generate global nonlinear
models. Authors in [27] apply genetic programming to
discover nonlinear differential equations. More examples of
genetic algorithm application for system identification are
[28–30]. Other modeling methods include but are not
limited to neuro-fuzzy methods [31] and high-order neural
network structures [32].

Black-box identification of the Duffing equation has also
been a matter of investigation. In [33], explorative genetic
programming is used to identify the model of a noisy
Duffing–van der Pol oscillator using numerical simulation
data. Artificial neural networks have been used to determine
the mathematical model of the damped Duffing in [34]. A
similar approach was proposed based on a set of basis
functions and applying least-squares in [35].

A more exploitation-based nonlinear system identifi-
cation approach was recently proposed in [36]. In this ap-
proach, a fixed matrix of candidate terms is first built upon
prior expert knowledge. Subsequently, a linear system of
equations is formulated using this matrix. ,e dominant
terms in the constructed matrix later form the identified
equation of the system. ,e sequential threshold least-
squares algorithm is applied to find the true model of the
system, depending on choosing the accurate value of the
regularization parameter. A revised version of this method
using the alternating direction method of multipliers
(ADMM) has been successfully implemented on captured
data from an experimental Duffing setup [37].

,e biggest criticism towards sparse identification
method lies in selecting ad hoc the appropriate library
functions. ,is problem can be observed in [37] as the
identification fails to discover the friction terms existing
in the experimental data as these complex nonpolynomial
terms are lacking in the library of functions. When
identifying an experimental dataset, the friction forces
within Duffing oscillators form an important model un-
certainty that also arises in many other mechatronic
applications such as in hydraulic actuators [38].

Nonlinear friction model parameters are reconstructed
mostly based on a priori given friction model structures
such as Coulomb and Stribeck friction models. Once these
friction models are correctly identified, they can be used
in control algorithms [39]. Consequently, in this paper, we
aim at implementing an evolutionary-based sparse
identification algorithm on the numerical and experi-
mental Duffing system. ,e combination of genetic
programming and sparse identification algorithm has
been previously suggested in [40]; however, no meth-
odology has been proposed so far.

In this paper, a revised version of sparse identification
using the evolutionary-based sparse identification algo-
rithm is studied for the first time to the authors’
knowledge applied on a set of real-world experimental
data. ,is paper is organized as follows. Section 2 de-
scribes the Duffing oscillator and the collected data from
the setup and simulation. Section 3 provides details on the
sparse regression algorithm. Section 4 briefly introduces
the genetic programming method as the base for the
evolutionary construction of the library and presents the
evolutionary-based sparse identification algorithm to
identify the model structure and parameters of the Duffing
oscillator. Results and discussions are provided in Section
5, applying the identification method on experimental and
numerical Duffing oscillator data. Conclusions are drawn
in Section 6.

2. Problem Statement and Data Acquisition

In this work, the proposed algorithm is applied on the
Duffing oscillator both numerically and experimentally. ,e
cubic Duffing equation as a differential equation with a
third-power nonlinear term is an example of a dynamic
system that exhibits chaotic behavior and bifurcations.
Experimental datasets are extracted from this setup to
identify the underlying equation. Simulations from the same
setup (using its characteristic parameters) implemented in
the MATLAB environment [41], furthermore, allow to ex-
amine the efficiency of the algorithm and validating the
presented method. ,e robustness of the algorithm is in-
vestigated on the data set by increasing added noise.

2.1. Duffing Oscillator: /eory and Experimental Realization

2.1.1. /eoretical Description. ,e mechanical Duffing os-
cillator with an imposed ground motion depicted as in
Figure 1 is characterized by the following dynamic equation:

m €x � −c( _x − _z) − k(x − z) − k3(x − z)
3
, (1)

with m being Duffing’s mass, c its linear damping, k the
linear stiffness, and k3 the cubic stiffness.

A change of coordinates to the relative ground dis-
placement q≜x − z yields

m€q � −c _q − kq − k3q
3

− m€z, (2)

or the dynamics expressed in state space:
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2.1.2. Design Principle of Mechanical Duffing Oscillator.
To realize the mechanical Duffing oscillator, a mass-spring
system, see Figure 2, is constrained to move along a designed
track y � f(x). ,e track’s shape determines the linear and
nonlinear stiffness, k and k3, (3).

If the mass is subject to a static force in the x-direction,
the mass moves along the track until equilibrium is reached.
It is now shown that the spring characteristic is nonlinear.
,e track exerts a reaction force on the followers attached to
the spring, R, perpendicular to the track’s curvature. ,e
linear spring is compressed according to the track, imposing
a force on the mass in the y-direction, Fy � kly(x). ,e
static applied force, the reaction force on the follower, and
the reaction force on the mass are related by static
equilibrium:

Fx � 2R sin(θ),

Fy � R cos(θ)⇒Fx � 2Fy tan(θ),
(4)

with θ being the tracks curvature’s angle, related to the force
profile by tan θ � df(x)/dx. If the track is f(x) � ax2 + b,
the spring characteristic is

Fx � 2klf(x)
df(x)

dx
� 4kla bx + ax

3
  � kx + k3x

3
, (5)

with k � 4klab and k3 � 4kla
2. By machining a parabolic

track, f(x) � ax2, the linear coefficient can be simply tuned
by shifting the profiles over a distance b.

2.1.3. Experimental Setup. ,e realized mechanical Duffing
oscillator with the abovementioned design principle is
shown in Figure 3(a). A mass with linear springs was fitted
on a linear guide rail. Tracks with the shape with a � 4m− 1

were made from machined steel. ,e followers on the
springs are SKF ball bearings. ,e linear springs have a
stiffness of kl � 16.7 kN, according to themanufacturer, with

the cubic stiffness then being k3 � 1.07MN/m3. ,e profiles
can be shifted for adjusting the b term in equation (5).

To impose the ground motion, the oscillator is put on a
shaking table, here a Beckhoff linear permanent magnet
motor. To measure Duffing’s mass and shaking table dis-
placement, accelerometer signals are integrated with the
algorithm in [42]. For this algorithm to perform well, the
signals should stay in a certain frequency band. ,e ground
displacement imposed by the shaking table is limited in
bandwidth by choosing a sine sweep and a random phase
multisine.

,e material contact between the followers and the track
causes dry friction.,e force in the y-direction Fy will cause
a perpendicular opposing friction force, μFy, with μ the
friction coefficient. ,e total opposing friction is

Ff � 2μkl ax
2

+ b sgn vx(  � μ1sgn vx(  + μ2x
2sgn vx( ,

(6)

with vx the speed in the x-direction. Including the friction
forces in the state space representation of the Duffing os-
cillator dynamics is

q1
.

� q2,

q2
.

� −
c

m
q2 −

k

m
q1 −

k3

m
q
3
1 −

μ1
m

sgn q2(  −
μ2
m

q
2
1sgn q2(  − €z,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

in which the viscous damping c, linear stiffness k, and dry
friction coefficients μ1 and μ2 have to be experimentally
identified.

2.1.4. Experimental Data. ,e input of the dynamical
equation (7), acceleration of the shaking table €z, and the
relative acceleration between the mass and shaking table €q,
captured from the described setup, are shown in Figures 4(a)
and 4(b), respectively. ,e excitation signal of the experi-
ment is a sine sweep from 2 to 20Hz. ,e sampling time
equals 0.488ms.

2.2. Duffing Oscillator: Numerical Data. In order to validate
the performance of the algorithm on numerical data, the
described Duffing setup has been simulated in MATLAB.
,e state space model used for the purpose of simulation is
the same as (3).

,e control input of the system is a linear swept-fre-
quency cosine presented in Figure 5(a). ,e noisy output

F m

Fx m

Fy

R

θ
x

y

f(x)

kl

Figure 2: Design principle of the Duffing oscillator.

m

k3 ck

x

z

Figure 1: A mechanical Duffing oscillator subjected to imposed
ground motion.
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acceleration obtained from numerical simulation is pre-
sented in Figure 5(b). ,e sampling time is 0.488ms. ,e
amplitude is selected such that the bifurcation is observable
in the output. Considering both sets of experimental and
numerical data in Figures 4 and 5, it can be noted that the
bifurcation occurs sooner in simulation. ,e bifurcation of a
Duffing oscillator occurs at a certain frequency of the input
sweep. ,is frequency depends on the amplitude of the
sweep, [43], which is different for the experiment and the

simulation, explaining why the bifurcation happens at a
different instant. ,e data for both (experimental and nu-
merical) cases are divided in identification and validation
parts.

3. Sparse Regression

,e aim of sparse regression in the field of system identi-
fication is to extract a low-dimension (sparse) representation

Profile

Follower

Rail

Spring

Mass

(a)

Shaking
table

(b)

Figure 3: (a) Realization of the Duffing oscillator design and (b) the Duffing oscillator on a shaking table.
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Figure 4: Experimental data: (a) the input, the acceleration of the shaking table €z; (b) the output, the relative acceleration between the mass
and shaking table €q; (c) velocity versus displacement.
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of the system from a high-dimensional space of candidate
representations using input and output data of the system.
Considering q ∈ Rn×p as the data matrix with p state var-
iables, each presented as a column of the matrix over n time
instants, sparse regression determines the state space
equation as a general nonlinear function g:

q
.

� g(q, u), (8)

where u ∈ Rn×1 is the input of the system, q
. ∈ Rn×p is the

time derivative of the states which can be measured or
numerically calculated, and the qmatrix (with derivatives q

.
)

is assumed to be fully observable.
By introducing a library of terms as functions of the

states and input of the system, the identification problem can
be presented as finding the sparse matrix ξ ∈ Rm×p [36]:

q
.

� Aξ, (9)

where A is the library of (non)linear terms.
Choosing the right form of nonlinearity in the con-

struction of the dictionary is essential in this approach which
requires user knowledge. Equation (10) illustrates such a
library. Each column, m, corresponds to a linear/nonlinear
term as a function of the states or the input:

A(q, u) �

| | | | | | |

1 q q2 · · · u u2 · · ·

| | | | | | |

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×m

. (10)

By solving equation (9), the dominant linear and non-
linear elements of the library A(q,u) will be chosen to

combine linearly and form the equation of the system g in
equation (8). ,e ξ matrix is determined by minimizing a
defined optimization problem. In this paper, we define the
optimization problem as the elastic net regulator [44]:

ξEN
∗

� argmin
ξ

‖Aξ − q
.

‖
2
2 + λ1‖ξ‖1 + λ2‖ξ‖

2
2, (11)

where λ1 and λ2 are the hyperparameters that are changed
discretely. ,e order of magnitude for these hyper-
parameters is defined through the parameter sweep.

4. Evolutionary-Based Sparse
Regression Methodology

4.1. Genetic Programming. Genetic programming (GP) is a
subclass of genetic algorithms that was first presented by
Koza in 1992 [45]. ,e basic idea of genetic programming is
to evolve populations of equations based on the captured
data and the fitness function evaluation of the simulation of
each equation, where each equation is presented as a tree.

In the first generation, a population is randomly con-
structed by combining the numbers, variables, and math-
ematical operations. Terminal nodes of the trees are
occupied by variables and numbers. ,e operators con-
sisting of basic algebraic operations (+, −, ×, and /), functions
(sin, cos, tan, abs, and sgn), or user-defined functions fill in
the nonterminal nodes called the primitives. Afterwards, the
population can vary in two ways: crossover and mutation. A
crossover happens when two parent trees randomly ex-
change branches to form new offspring (Figure 6). Mutation
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Figure 5: Numerical data. (a) ,e input, acceleration of the shaking table €z. (b) ,e output, the relative acceleration between the mass and
shaking table €q. (c) Velocity versus displacement.
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involves random alteration of a parent’s subtree (Figure 7).
In the next step, the algorithm evaluates the fitness of each
tree. ,e next generation is built based on the fitness
evaluation. Following, the algorithm cycles through this loop
until it reaches the stopping criteria or its convergence. A
typical error metric such as least squares or root mean
squared error is used as the fitness measure.

4.2. ESparse Algorithm. Following the description of sparse
regression and genetic programming, in this section, the
proposed algorithm is described. As presented in Algo-
rithm 1, the identification procedure consists of two main
steps:

(1) Construction of the library ( A
n×m

) using genetic
programming

(2) Performing the sparse regression

In each iteration, an ODE equation is realized by solving
a layered optimization problem: the individual trees in the
population are used as the functions to build the A

n×m
library

in (10). Next, the sparse regression is performed on the
constructed library by solving (11). Based on this approach
alternative to a predefined library, the sparse regression is
applied on a dynamic set of functions generated from the
genetic programming. ,e advantage of this method is
clearly its ability to generate an explorative library consisting
of an extensive space of functions derived from the captured
data. Moreover, this alternation between the explorative step
1 and the exploitative step 2 allows a reduction in the
number of terms for regression.

5. Results and Discussion

In this section, the ability of identifying the correct form of
the Duffing equation using the method from Section 4.2 in
case of both numerical and noisy experimental datasets is
analyzed. Both sets of data are captured from the Duffing
oscillator described in Section 2, as a nonlinear dynamic
system benchmark. In case of experimental data, we are
specifically looking for the identification of the state space
including the friction term as in equation (7). We also in-
vestigated the robustness of the algorithm with respect to
noise in the data. By changing the level of added noise in

simulation and how the accuracy of the identified model is
affected by that noise provides a means to assess the
robustness.

5.1. Numerical Duffing. When applying the ESparse algo-
rithm on the captured input/output dataset from Duffing
oscillator simulations (Figure 5), the state space equation is
identified. ,e first 16000 samples (the head of the arrow)
are selected for validation, while the remainder are used for
identification. For the numerical analysis to follow, the
parameters in equation (3) are assumed to have the values
m � 0.49(kg), k � 487(N·m− 1), k3 � 1.07e6(N·m− 3), and
c � 1.8(N·s·m− 1). ,e evolutionary parameters and values
are presented in Table 1. Moreover, q, _q, and €z are the inputs
of the GP denoted as X0, X1, and X2. ,e theoretical ODE
equation together with the identified model for different
levels of signal-to-noise ratio (SNR) is given in Table 2. ,e
associated error percentage is calculated using validation
data.

5.1.1. Robustness Analysis. To demonstrate the robustness of
the algorithm, various levels of Gaussian white noise with
zero mean were added to the data set. Figure 8 presents the
tree of the identified equation in case of SNR� 19.5 dB.
Moreover, the comparison between actual and identified
validation data for SNR� 19.5 dB and SNR� 18.5 dB is
presented in Figures 9(a) and 9(b), respectively.

A more general assessment for large ranges of signal-to-
noise ratio (SNR) was performed, and the results are pre-
sented in Figure 10. Each data point in this figure corresponds
to the mean of the accuracy percentage of 20 identification
runs. Error bars are as well depicted that relate to the standard
deviation. ,e results suggest that the proposed algorithm
possesses the capability to reveal both the structure of the
governing equation as well as the parameter values of the
Duffing system. For SNR values from 20 to approximately
17 dB that correspond to increasing noise level, the accuracy
of the identified parameter values decreases and ultimately the
accuracy of the identification procedure itself. However, no
additional terms appear in the discovered model, indicating
the robustness of the presented algorithm. As can be observed
in Figure 10, for low SNR (lower than approximately 17 dB)
more terms are added to the equations. ,is clearly indicates

×

Log

x2

–

0.87x1

(a)

×

Cos

x1

+

1.64x2

(b)

×

–

0.87x1

+

1.64 x2

(c)

×

Cos

x1

Log

x2

(d)

Figure 6: Illustration of the genetic programming crossover. (a) First parent before crossover with a randomly selected branch. (b) Second
parent before crossover with a randomly selected branch. (c) First offspring after crossover. (d) Second offspring after crossover.
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that the data become overfitted by the identified model ul-
timately resulting in deteriorated accuracies.

5.2. Experimental Duffing. Similar to the numerical Duffing
data, ESparse is applied onto experimental Duffing data with
the purpose to identify the Duffing equation. We conducted
three experiments with the same input acceleration profile
under the same conditions, resulting in data presented as in
Figure 11. In all cases, the first 90000 data samples of the
control input and the output are selected for validation and
the rest are used for training.

,e evolutionary parameters of the genetic program-
ming are given in Table 3. Table 4 summarizes the identified
model obtained from the three experiments using the
ESparse algorithm. Additionally, Figure 12 presents the tree
of the identified equation with 5.6% error. ,e terms
appearing in these equations are well supported by the
theoretical model from equation (7) that includes Coulomb

friction. ,e results demonstrate the ability of the algorithm
to identify nonpolynomial nonlinearities. Comparison be-
tween the actual and identified output acceleration data is
illustrated in Figure 13. A clear correlation between the two
sets of data can be observed from Figure 13(b).

5.3. Comparison with Other Available Methods. To sub-
stantiate the advantages of the proposed ESparse algorithm, a
comparison with other available methods with respect to
performance measures run time and % error are drawn in
Table 5. Sparse regression (see Section 3) and genetic pro-
gramming (see Section 4.1) are applied on the same dataset. For
the purpose of having a fair comparison, crossover and mu-
tation probabilities as well as the employed basis functions
applied for genetic programming are the same as those
employed in the ESparse algorithm (Table 3). However, to
achieve the correct model of the system using genetic pro-
gramming, the population size and number of generations have
to increase to 250 and 80, respectively. As suggested by the
results, the ESparse algorithm is capable of converging to the
model with the same level of accuracy with much less com-
putational effort. As for the sparse regressionmethod, we had to
manually include the sign function as being part of the library of
(non)linear terms (coming from knowledge gained with the
ESparse algorithm) since otherwise the model structure cannot
be discovered, whereas the ESparse algorithm automatically
builds the proper library using genetic programming.

+

2.69

x1

Sin

(a)

+

Cos

x1 x2

Sin

(b)

Figure 7: Illustration of the genetic programmingmutation. (a) Parent before mutation with a randomly selected branch. (b) Offspring after
mutation.

Require: time-varying measurement data: q
n×p

, q
.

n×p

, and u
n×1

. Population size r, number of generations k, and probabilities of
crossover and mutation.

(1) Procedure:
(2) Initialize the population of size r randomly
(3) For i � 0: k do
(4) Construct dictionary A

n×m
based on the individuals

(5) Solve the regression problem: ξEN
∗ � argmin

ξ
‖Aξ − q

.
‖
2
2 + λ1‖ξ‖1 + λ2‖ξ‖

2
2

(6) Compute the fitness function: mean square error
(7) Generate new population using crossover and mutation
(8) End for
(9) End procedure

ALGORITHM 1: ESparse algorithm.

Table 1: Evolutionary parameters for the numerical Duffing.

Evolutionary parameter Value
Population size 80
Crossover rate 0.9
Mutation rate 0.1
Number of generations 30
Basis functions Plus, minus, times, abs, sgn
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5.4. Advantages and Limitations of the Method

5.4.1. Advantages. ,e proposed methodology has major
benefits in comparison with sparse regression and genetic
programming-based methods for nonparametric identifi-
cation. ,e evolutionary-based sparse regression requires
lower computational effort relative to genetic programming-
based algorithms. For GP-based algorithms to converge to
the true solution, large populations with high number of
generations are typically required. Nonetheless, the

presented ESparse algorithm has the ability to converge to
the correct model with less computational effort and having
a balanced model complexity since ESparse alternates be-
tween exploration (genetic programming) and exploitation
(sparse regression). ,erefore, the algorithm can discover
the system equation with fewer generations and smaller
populations.

As for the sparse regression method, the strict model
assumptions prior to identification can limit the model
complexity while the dynamic library of functions in

×
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Figure 8: Tree presentation of the identified numerical Duffing with SNR� 19.5 dB.

Table 2: Identified models by the ESparse algorithm, numerical Duffing.

Identified ODE equation % error
,eoretical reference €q � −3.67 _q − 993.88q − 2.18e6q3 − €z -
SNR� 20 dB €q � −3.67 _q − 994.19q − 2.18e6q3 − €z 0.7
SNR� 19.5 dB €q � −3.67 _q − 994.81q − 2.19e6q3 − 0.99€z 1.9
SNR� 19 dB €q � −3.67 _q − 984.64q − 2.15e6q3 − €z 3.7
SNR� 18.5 dB €q � −3.73 _q − 867.83q − 1.72e6q3 − 1.02€z 11.2
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Figure 9: Comparison of the actual and identified numerical Duffing for (a) SNR� 19.5 dB and (b) SNR� 18.5 dB.
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evolutionary-based sparse regression allows for discovery of
more complex models by extending the search space and
replacing the need for user knowledge for the construction
of the library with data-driven GP step.

5.4.2. Limitations. Although the proposed algorithm allows
to identify more complex nonpolynomial terms in the
equation such as friction terms, the basic building blocks are
required to be included in the pool of the basic functions of
the GP algorithm. Otherwise, the identified system will only

be composed of available blocks whichmay not represent the
nature of the system accurately.

6. Conclusion

In this paper, an evolutionary-based sparse regression al-
gorithm for discovering both the structure and the pa-
rameter values of the system has been proposed. ,e
methodology is used for the purpose of identifying the
Duffing oscillator system using both numerical and noisy
experimental data. In case of numerical Duffing, the data are
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Figure 10: Mean and standard deviation of the identification accuracy for various levels of SNR.
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Figure 11: Experimental data. (a) ,e input, the acceleration of the shaking table €z. (b) ,e output, the relative acceleration between the
mass and shaking table €q.

Table 3: Evolutionary parameters for the experimental Duffing.

Evolutionary parameter Value
Population size 150
Crossover rate 0.8
Mutation rate 0.2
Number of generations 40
Basis functions Plus, minus, divide, times, abs, sgn

Table 4: Identified models by the ESparse algorithm, noisy experimental Duffing.

Exp. Identified Duffing % error
1: €q � −1.10 _q − 691.92q − 2.37e6q3 − 2.93sgn _q − 7.63e3q2sgn( _q) − 1.02€z 3.9
2: €q � −1.23 _q − 714.60q − 2.24e6q3 − 4.11sgn _q − 8.23e3q2sgn( _q) − 1.04€z 5.6
3: €q � −1.22 _q − 716.11q − 2.35e6q3 − 3.81sgn _q − 8.26e3q2sgn( _q) − 1.04€z 4.7
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polluted with different levels of noise to study the robustness
of the algorithm. Furthermore, the approach is challenged to
discover governing dynamics that include nonpolynomial

nonlinear Coulomb friction terms, from noisy experimental
Duffing data. As shown by the percentage of the identifi-
cation error, the algorithm is effective in unveiling the
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Figure 12: Tree presentation of the identified experimental Duffing 5.6% error.
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Figure 13: Comparison of the actual and identified experimental Duffing: (a) comparison over time and (b) actual acceleration versus
identified.

Table 5: Comparison of performance measures, experimental Duffing.

Method Run time (s) % error
Genetic programming (exp. 1) 449.411 5.7
Genetic programming (exp. 2) 425.884 5.3
Genetic programming (exp. 3) 539.042 4.1
Sparse regression (exp. 1) 2.092 3.9
Sparse regression (exp. 2) 2.563 4.6
Sparse regression (exp. 3) 2.677 5.2
ESparse algorithm (exp. 1) 12.626 3.9
ESparse algorithm (exp. 2) 12.171 5.6
ESparse algorithm (exp. 3) 12.125 4.7
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physical nature of the Duffing oscillator. ,e proposed
method has possible applications to other nonlinear systems
such as in mechatronics, robotics, and electronics.
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