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Abstract Nonlinear energy sinks (NESs) are broad-
band passive vibration absorbers that are nonlinearly
connected to a host system. If an NES is attached
to a multi-degree-of-freedom mechanical host system
under transient loading, the vibrations in the host sys-
tem will transfer to and dissipate in the NES. During
this transfer, the NES sequentially resonates with the
modal frequencies of the host system, dissipating one
mode at a time. This phenomenon is called resonance
capture cascade (RCC). So far, RCC has only been
investigated for NESs with a hardening nonlinear stiff-
ness. Because of this stiffness, the transfer of modal
vibrations happens from high to low frequency. In this
study, an NES with a softening stiffness is proposed.
Investigating the slow invariant manifolds reveals that
an inverted resonance capture cascade occurs, where
the transfer of vibrations to the NES is from low to
high frequency.The analysis is carried out by exploiting
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high-dimensional slow invariant manifolds. The pro-
posed NES is compared to the conventional NES with
hardening stiffness.

Keywords Nonlinear energy sink · Resonance
capture cascade · Nonlinear vibration absorber ·
Inverted resonance capture cascade

1 Introduction

Nonlinear energy sinks (NESs) are passive vibration
absorbers, consisting of a small mass attached to the
host system through a nonlinear spring and a damper
[1–3]. Because of its nonlinear nature, the NES has a
variable natural frequency, which increases its working
bandwidth compared to conventional linear vibration
absorbers, such as the tuned mass damper (TMD) [4].
Accordingly, in the case of broadband frequency vibra-
tions, a small number of NESs can work more effec-
tively than their linear counterpart, making the NES an
attractive device in engineering.

Several types of NESs were proposed in the litera-
ture, apart from the classical one [3], which features
a hardening polynomial stiffness. Examples are the
vibro-impact NES [5–7], the rotating NES [8,9] and
the bistable NES [10–12]. A common feature of these
various devices is the broad frequency bandwidth of
operation. The NES proved to be effective in various
tasks, such as mitigation of transient [2,13,14], forced
[15–18] and self-excited oscillations [19,20]; however,
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some limitations about its effectiveness for suppressing
limit cycle oscillations were also disclosed [21,22].

The NES is especially effective for suppressing
vibrations of multi-degree-of-freedom (MDOF)
mechanical systems with many vibration modes, each
mode with its own shape and frequency [23]. Several
studies illustrated that, under transient conditions, the
NES mainly interacts with one vibration mode at a
time. After dissipating most of the mechanical energy
of one mode, the NES tunes to the subsequent mode,
going from higher to lower frequencymodes. This phe-
nomenon is called resonance capture cascade (RCC)
and is a consequence of the variable natural frequency
property of the NES [2,24–27].

The RCC phenomenon was first discovered in 2003
[24] by investigating the nonlinear normal modes
(NNMs) of the undamped system. Recently, in [28], the
energy transfer duration per vibrationmodewas analyt-
ically estimated. The implemented procedure exploited
the slow invariant manifold (SIM), which is the set
of fixed points of oscillation amplitudes for the fast
timescale. In [28], the SIM was limited to a two-
dimensional space by assuming one active mode at
the time. In [29], the SIM was extended to a multi-
dimensional space by simultaneously considering all
the vibration modes of the primary system activated.
This approach provided a better understanding of the
RCC based on the so-called interaction points. Consid-
ering that only one mode of the primary system is acti-
vated, the interaction points indicate the points of the
SIM most affected by slight activation of other modes.
They proved to be able to explain the RCC, providing
a different point of view than its interpretation based
on the NNMs. The RCC was experimentally obtained
in [26,30].

Almost exclusively, all types of NES proposed in
the literature present a hardening nonlinearity, in most
cases cubic. The choice of a cubic restoring force is
natural since it is probably the simplest and most stud-
ied type of nonlinearity (such as the Duffing oscilla-
tor [31]). Additionally, for any odd nonlinear function
expanded in the Taylor series around the origin, a cubic
term is the lowest-order nonlinear term, except for spe-
cial cases. Furthermore, aiming at having a systemwith
no linear component, the lowest order nonlinear term
should be of hardening type to avoid a static instability
in zero. Physical mechanisms utilized for generating
nonlinear restoring force generally exploit geometrical
nonlinearities, which usually can be reduced to harden-

ing nonlinearities, in first approximation cubic. These
involve transversely loaded strings [26,32], springs
[33,34] or beams [35],magnets [36–38] or leafs springs
[39]. Impact NES are one of the few types of NES
whose restoring force is not reducible to a cubic term,
but it is still of hardening type [5].Between the fewNES
designs which are not strictly hardening, we mention
the bistable NES [10,11], the pendulum NES [40], the
periodically extended NES [41] and other non-smooth
NESs [42] with descending stiffness [43]. Neverthe-
less, none of them has a strictly softening restoring
force.

Recently, a mechanism that can generate a large
range of stiffness characteristicswas proposed and real-
ized in practice [30,44,45]. The mechanism relies on
a mass in contact with an arbitrarily shaped surface
through a compressed linear spring, placed orthogo-
nally with respect to the mass displacement. The shape
of this force profile, which can be either machined
or 3D-printed, determines the total stiffness charac-
teristic. In particular, this mechanism can be used to
generate a softening restoring force. Alternative meth-
ods for obtaining a softening restoring force function
exist, such as topology optimization [46–48], magnetic
forces [36,49] and metamaterials [48]. However, their
effectiveness in real-world vibration control applica-
tions undergoing large vibrations is questionable since
the displacement range for which the restoring force
has a softening characteristic is usually limited [37].

Concerning the functionality of the NES, the pos-
sibility of freely choosing the restoring force function
provides a significant advantage. In particular, the nat-
ural frequency of the conventional NESs (with harden-
ing stiffness) increases with the NES’s vibration ampli-
tude. As such, the NES dissipates the higher frequency
modes of the host system more efficiently than the
lower frequencymodes. Referring to the RCC, theNES
tunes first with higher modes and then with lower ones.
However, lower vibrationmodes typically containmore
energy and cause larger displacements. Therefore, it
would be beneficial to design an NES that dissipates
first the lower frequency modes and does it more effi-
ciently. With this objective, this paper investigates an
NES with a softening stiffness, which has a natural fre-
quency that decreases for increasing vibration ampli-
tude. By exploiting high-dimensional SIMs, it will be
shown that the modal interaction between an MDOF
and a softening NES inverts the order in which the
modal energy is transferred from the host system to the
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Fig. 1 a A simplified model of the nonlinear energy sink; b stiffness characteristics for hardening and softening stiffness; c relation
between amplitude and natural frequency for the three different NESs considered

NES during RCC. This sequential transfer will now be
from low- to high-frequency modes and, as such, the
phenomenon will be called inverted resonance capture
cascade (IRCC).

The paper is structured as follows: in Sect. 2, the
frequency–amplitude relations of hardening and soft-
ening NESs are investigated. In the following section,
the expressions and stability of higher-dimensional
SIMs are derived. Then, the SIMs for a two-DOF pri-
mary system are discussed in Sect. 4 and compared
to numerical simulations where one of the two modes
are constant. Section5 observes the (inverted) RCC for
both the previously considered two-DOF system and
a four-DOF system. Finally, the conclusions are pre-
sented.

2 Frequency–amplitude plot of an NES with
softening stiffness

Figure1a shows a generic undamped NES. The vari-
able natural frequency of an NES can be illustrated by
considering the unforced NES and applying harmonic
balancing. This consists of an unforced single-DOF
oscillator, whose dynamics is described by:

ma ẍa + fnl(xa) = 0. (1)

Its steady-state solution is approximated by a
Galerkin method, more precisely a projection on trun-
cated Fourier series of a single harmonic [50,51], xa =
A sin(ωT ), where no assumption ismade onω. By then

applying a standard harmonic balance technique [52]
for frequency ω, Eq. (1) is transformed into:

ω

2π

∫ 2π
ω

0
−maAω2 sin2(ωT )dT

+ ω

2π

∫ 2π
ω

0
fnl (A sin(ωT )) sin (ωT ) dT = 0

⇒ maAω2 sin(ωT )

− ω

2π

∫ 2π
ω

0
fnl (A sin(ωT )) sin (ωT ) dT = 0

(2)

where the integral is the first harmonics from the trun-
cated Fourier series. ThreeNESs are considered, which
possess nonlinear restoring forces fnl(xa) as depicted in
Fig. 1b, namely one with a hardening stiffness x3a , one
with a softening stiffness sgn(xa) 3

√|xa| and, finally, one
with a softening but saturating stiffness arctan(20xa).
The relation between frequency and amplitude is found
by solving the integral in Eq. (2), which yields:

fnl(xa) = x3a : maω
2 = 3A2

4

fnl(xa) = sgn(xa)
3
√|xa| : maω

2 =
3Γ
(
7
6

)
√

πΓ
(
2
3

) 1

A
2
3

fnl(xa) = arctan(20xa) : maω
2 = 2

√
400A2 + 1 − 1

20A2
,

(3)

where Γ(·) is the Gamma function. The frequency–am-
plitude plots are shown in Fig. 1c, considering a unit
mass. The natural frequency of theNESwith hardening
stiffness is linearly proportional to the vibration ampli-
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tude, while it is inversely proportional for the NESwith
softening and saturating stiffness. For a hypothetical
two-DOF host system, the natural frequencies are rep-
resented by dashed lines in Fig. 1c.

Generally speaking, the NES interacts with a natural
frequency of the primary system when the line repre-
senting its natural frequency crosses the line of the natu-
ral frequency of the primary system. Consequently, the
NES with hardening stiffness interacts with the higher
mode of the primary system at a higher vibration ampli-
tude than with the lower mode. The opposite holds for
the NES with softening and saturating stiffness. This
suggests that, assuming a sufficiently large energy con-
tent in the system, the NES with softening stiffness
should dissipate the lower natural frequency earlier
than theNESwith hardening stiffness.Accordingly, the
order of transfer of the vibration modes should also flip
in the case of softening nonlinearity. This conjecture
will be proved later on with a more rigorous approach.

The softening sgn(xa) 3
√|xa|, and softening and sat-

urating arctan(20xa) functions are similar both in char-
acteristic and frequency–amplitude relation. However,
when approaching zero amplitude, sgn(xa) 3

√|xa|’s de-
rivative, and accordingly its frequency, goes to infinity,
while arctan(20xa)’s derivative in zero is 20, i.e., its nat-
ural frequency tends to a constant value. Considering
possible practical realizations of a softening NES, in
[30,41,44] a device was presented that can tailor-make
stiffness characteristics. It would not be able to achieve
sgn(xa) 3

√|xa| because of its infinity derivative; there-
fore, to facilitate computation and future experimental
works, the softening and saturation arctan function will
be used later on to showcase inverted resonance cas-
cade, as its frequency–energy relation is very similar to
the sgn(xa) 3

√|xa| function. Furthermore, the algorithm
used to generate themulti-dimensional SIMs can better
deal with the finite derivative of the arctan function.

3 Slow invariant manifold for a generic primary
system

Let us consider an n-DOF primary system with an
attached NES, whose dynamics is modeled by the fol-
lowing system of differential equations

n∑
j=1

mhj ẍ j +
n∑
j=1

chj ẋ j +
n∑
j=1

khj x j = 0

for h = 1, ..., n, h �= l

n∑
j=1

ml j ẍ j +
n∑
j=1

cl j ẋ j +
n∑
j=1

kl j x j + ε(ẍn+1) = 0

εẍn+1 + ca (ẋn+1 − ẋl) + fnl (xn+1 − xl) = 0, (4)

where mhj = m jh , chj = c jh and khj = k jh are the
terms of the primary system mass, damping and stiff-
ness matrices, ε is the absorber mass, ca is the absorber
linear damping coefficient, x1 to xn are the primary sys-
tem’s coordinates and xn+1 the absorber’s coordinate.
ε is assumed small with respect to the primary system
masses. Also, this study does not consider the special
case of internal resonances. The absorber is assumed to
directly interact only with the l th DOF of the primary
system.

To perform a modal analysis of the primary system,
we temporarily neglect the contribution of the absorber,
reducing the system to

Mẍ + Cẋ + Kx = 0, (5)

where M, C and K are n × n matrices (the full system
has dimension n+1). We decouple the primary system
by adopting the transformation x = Uq, where U con-
tains the eigenvalues of M−1K, normalized such that
UTMU = I, where I is the identity matrix. U is defined
as

U =
⎡
⎢⎣
u11 · · · u1n
...

. . .
...

un1 · · · unn

⎤
⎥⎦ . (6)

To simplify the notation, the damping matrix C is
assumed given by a linear combination of M and K,
such that the primary system is fully decoupled in
modal coordinates. This simplification does not affect
the generality of the results. After the modal analysis,
the primary system dynamics is described by the dif-
ferential equations

q̈h + 2ζhωhq̇h + ω2
hqh = 0 for h = 1, ..., n, (7)

whereωh and ζh are the primary system’s natural angu-
lar frequencies and modal damping ratios.

By considering the coordinate transformation and
that the NES is attached to the l th DOF of the primary
system, we reintroduce the absorber into the system.
We then obtain the system of differential equations
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q̈h + 2ζhωhq̇h + ω2
hqh = −ulhε

⎛
⎝z̈ −

n∑
j=1

ul j q̈ j

⎞
⎠

for h = 1, ..., n

εz̈ + ca ż + fnl(z) = ε

n∑
j=1

ul j q̈ j ,

(8)

where z = xl − xn+1. Next, we introduce the dimen-
sionless damping parameter ζa = ca/ (2εω1), attaining

q̈h + 2ζhωhq̇h + ω2
hqh = −ulhε

⎛
⎝z̈ −

n∑
j=1

ul j q̈ j

⎞
⎠

for h = 1, ..., n

z̈ + 2ζaω1 ż + fnl(z)

ε
=

n∑
j=1

ul j q̈ j .

(9)

3.1 Slow invariant manifold and stability

Aiming at characterizing the behavior of the NES
against impulsive excitations, we seek the SIMdescrib-
ing the slow dynamics of the system. Considering typ-
ical practical constraints, we assume that ε is a small
parameter (ε � 1). To obtain the SIM, the dynamic
variables are substituted by the complex variables of
Manevitch Ah(T ), Bj (T ) ∈ C [53]:

2Ah(T )eiωhT = qh − i q̇h/ωh

2Bj (T )eiω j T = z j − i ż j/ω j
(10)

where the original variables are then substituted by:

qh = Ah(T )eiωhT + A∗
h(T )e�iωhT

q̇h = iωh Ah(T )eiωhT � iωh A
∗
h(T )e�iωhT

for h = 1, ..., n (11)

z ≈
n∑
j=1

Bj (T )eiω j T + B∗
j (T )e�iω j T

︸ ︷︷ ︸
z j

ż ≈
n∑
j=1

iω j B j (T )eiω j T − iω j B
∗
j (T )e�iω j T

︸ ︷︷ ︸
ż j

(12)

where ∗ stands for complex conjugate and z j is the
contribution of mode j to z.

Deriving (10) w.r.t. time yields, after some steps
[41]:

q̈h + ω2
hqh = i2ωh Ȧhe

iωhT

z̈ j + ω2
j z j = i2ω j Ḃ j e

iω j T .
(13)

The total relative acceleration of the NES is z̈ =∑n
j=1 z̈ j . Substituting (11), (12) and (13) into (9) and

applying harmonic balancing (keeping only terms of
eiωhT ) yield:

2ωh Ȧh + 2ζhω
2
h Ah =

−ulhε(2ωh Ḃh − iω2
h Bh − 2ulhωh Ȧh + iulhω

2
h Ah)

2ωh Ḃh − iω2
h Bh + 2ζaω1ωh Bh

+i BhGh(|B1|, ..., |Bn |) = ulh
(
2ωh Ȧh − iω2

h Ah

)

for h = 1, ..., n, (14)

where the term BhGh(|B1|, ..., |Bn |) in (14) is the
Fourier coefficient for ωh of the multidimensional
Fourier series. A multidimensional harmonic balanc-
ing method [52,54,55] is applied, which can deal with
multi- and quasi-periodic vibrations. The first step is to
separate the vibrations into distinct time variables:

Tj = ω j T for j = 1, ..., n (15)

The multidimensional Fourier coefficient for ωh then
is

Bh(2π)nεGh

=
∫ 2π

0
. . .

∫ 2π

0
fnl

⎛
⎝ n∑

j=1

Bje
iTj + B∗

j e
�iTj

⎞
⎠

× eiTh dT1 . . . dTn . (16)

The integral (16) is generally hard to solve analyti-
cally, except if the restoring force is assumed to have
the following form:

fnl ≈ ka (xn+1 − xl) +
g∑

r=1

ka2r+1 (xn+1 − xl)
2r+1 .

(17)

The summation
∑g

r=1 ka2r+1 (xn+1 − xl)2r+1 indi-
cates a generic polynomial series representation of the
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restoring force of the NES—which is assumed odd—
excluding the linear term, and where 2g + 1 is the
highest polynomial order considered. This series can
be an exact representation of the restoring force but
can also be obtained from Taylor’s series expansion or
least-squared fitting of the stiffness characteristic over a
certain range. The polynomial series allows for an ana-
lytical expression under harmonic balancing [29] for
the quasi-periodic vibrations of the NES, as the natural
frequencies of the primary system are assumed incom-
mensurate and remote. For now, no assumption will be
made on fnl to keep the generic nature of the equations,
but Eq. (17) will be applied in the numerical examples
further on.

Then, the dynamics in (14) are split into two time
scales, a fast time τ0 and a slow time τ1:

Ah(T ) = Ah(τ0, τ1) Bh(T ) = Bh(τ0, τ1)

τ0 = T, τ1 = εT
d

dT
= ∂

∂τ0
+ ε

∂

∂τ1

(18)

By applying this procedure to (14) and collecting terms
according to their order in ε, we attain

∂Ah

∂τ0
= 0

2ωh
∂Ah

∂τ1
+ 2ξhω

2
h Ah

= −ulh

(
2ωh

∂Bh

∂τ0

−iω2
h Bh −

������
2ulhωh

∂Ah

∂τ0
+ iulhω

2
h Ah

)

2ωh
∂Bh

∂τ0
− iω2

h Bh + 2ζaω1ωh Bh

+i BhGh(|B1|, ..., |Bn |)

= ulh

(

�
�

�
�

2ωh
∂Ah

∂τ0
− iω2

h Ah

)

for h = 1, ..., n, (19)

where ξh = ζh/ε. To obtain the slow flow dynamics
from Eq. (19), the (fast) time derivatives with respect
to τ0 will be assumed zero, leading to a steady-state
solution in this time scale. An n + 1-dimensional slow
invariant manifold that governs the relation between
Ah and Bj , for j = 1, ..., n will be found. To verify
the assumption that a steady-state motion exists, the
stability in τ0 will be obtained from Eq. (19) as well.

3.1.1 Slow invariant manifold

In the second and third equations of (19), derivatives of
Bh with respect to τ are set to zero, and Ah and Bh are
defined as Ah = aheiαh/2 and Bh = bheiβh/2. Then,
the equations are split into their real and imaginary
parts, yielding the following equations:

2
∂ah
∂τ1

= −2ξhωhah + ulhωhbh sin(βh − αh)

2ah
∂αh

∂τ1
= −ulh (−ωhbh cos(βh − αh) + ulhωhah)

2ζaω1ωhbh = ulhω2
hah sin(βh − αh)

− ω2
hbh + bhGh (b1, ..., bn)

= ulhω2
hah cos(βh − αh)

for h = 1, ..., n. (20)

Subsequently, inserting the third into the first equa-
tions of (20), and squaring and adding the third and
fourth equations yield the slow flow dynamics and slow
invariant manifold, i.e.,

∂a2h
∂τ1

= −2ξhωha
2
h − 2ζaω1b

2
h

u2lhω
4
ha

2
h = b2h

((
ω2
h − Gh(b1, ..., bn)

)2 + 4ζ 2
a ω2

1ω
2
h

)

for h = 1, ..., n. (21)

These forma systemof differential equations andoneof
algebraic equations defining the SIM of the system. ah
indicates the amplitude of oscillation of the hth mode of
the primary system, while bh indicates the component
of the relative amplitude of oscillation of the absorber
at ωh angular frequency. The differential equations of
(21) imply that ah will decrease if there is damping
in the NES or modal damping in the primary system.
The algebraic equations define the SIM that confines
the relation between the modal amplitudes of the host
system (a1, ..., an) and of the NES (b1, ..., bn).

3.1.2 Stability

In order to obtain the SIM and slow flow dynamics,
it was assumed that derivatives of Bh with respect to
τ0 were zero. To verify this assumption, the stability
of Bh in τ0 is determined by linearizing the last set of
equations of (19) around the fixed points on the SIM
obtained from (21), and determining the eigenvalues
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of the Jacobian matrix. As ∂Ah/∂τ0 = 0, Ah is not
perturbed in this procedure. This procedure is common
to determine the stability of SIMs [34,41]. We obtain
from the linearization

[
∂ΔB
∂τ0

∂ΔB∗
∂τ0

]
=
[

∂f
∂B

∂f
∂B∗

∂f∗
∂B

∂f∗
∂B∗

]

︸ ︷︷ ︸
J

[
ΔB
ΔB∗

]
, (22)

where ∗ stand for complex conjugate,
ΔB = [ΔB1, ..., ΔBn]T , ΔBh = Bh − Bh,eq, Bh,eq is
the value of Bh in the fixed point, and J is the Jacobian.
If the Jacobian has any eigenvalue with a positive real
part, the fixed point is unstable. The Jacobian’s subma-
trices are defined as:

∂f
∂B

=

⎡
⎢⎢⎣

∂ f1
∂B1

. . .
∂ f1
∂Bn

...
. . .

...
∂ fn
∂B1

. . .
∂ fn
∂Bn

⎤
⎥⎥⎦ ∂f

∂B∗ =

⎡
⎢⎢⎣

∂ f1
∂B∗

1
. . .

∂ f1
∂B∗

n
...

. . .
...

∂ fn
∂B∗

1
. . .

∂ fn
∂B∗

n

⎤
⎥⎥⎦

∂f∗

∂B
=
(

∂f
∂B∗

)∗
∂f∗

∂B∗ =
(

∂f
∂B

)∗

(23)

where fh is a recollected version of the final equation
of (19):

fh = 1

2ωh

(− ulhiω
2
h Ah + iω2

h Bh − 2ζaω1ωh

− i BhGh(|B1|, ..., |Bn|)
)

for h = 1, ..., n.

(24)

3.1.3 Interaction points

The SIM presented in Eq. (21) is very informative
regarding the system’s slow dynamics since it can char-
acterize themutual effect of eachmodal vibration of the
primary system on the NES. However, it is quite com-
plex to visualize it because it exists in a 2n-dimensional
space. In most studies about the SIM of NES, the SIM
is limited to a single mode, which reduces it to a curve
in a two-dimensional space. Indeed, this representa-
tion constitutes a good starting point for studying the
effect of other modes on the one under study. With this
purpose, in [29], the so-called interaction points were
defined. Their meaning and implications are explained
below.

Let us consider that only one mode of the primary
system, ah , is activated. In this case, only bh �= 0, while
b j = 0 for any j �= h. The SIM is then reduced to a
line in the two-dimensional space ah, bh . If any of the
other modes a j is activated (a j �= 0, but small), then
the SIM in the ah, bh will be affected, but only in a
specific region around a point called interaction point
bh-b j .

The interaction point bh-b j can be found by con-
sidering the j th equation of (21), and assuming that
bh 	 bi for i �= h (therefore including i = j). For
illustration, we consider the example of a hardening
and a softening stiffness, both locally approximated
by a third-order polynomial (see Eq. (17)), such that

Gh = ω2
a + γ3

(
3b2h + 6b2j

)
/4, with ωa = √

ka1/ε,

where γ3 > 0 for a hardening stiffness and γ3 < 0 for
a softening stiffness.

This assumption reduces the j th equation of (21) to

b2j = u2l jω
4
j a

2
j(

ω2
j − ω2

a − γ3
3
2b

2
h

)2 + 4ζ 2
a ω2

1ω
2
j

. (25)

Equation (25) has a maximum for

b2h =
2
(
ω2

j − ω2
a

)

3γ3
. (26)

Since this value corresponds to the point where b j is
maximal, it is also the point where it has the largest
effect on bh . By substituting Eq. (26) into the hth Eq.
(21), we obtain

a2h =
2
(
ω2
j − ω2

a

)

3γ3u
2
lhω4

h

⎛
⎝
(

ω2
h −

ω2
a + ω2

j

2

)2
+ 4ζ 2a ω2

1ω
2
h

⎞
⎠ .

(27)

Equations (27) and (26) explicitly identify the interac-
tion point bh-b j in the ah, bh space. If different polyno-
mial orders are considered in the NES restoring force,
the equations are not valid anymore, but the same pro-
cedure can be adopted.

We note that, for the case of a hardening NES
(γ3 > 0), a resonant point exists only if ω j > ωa. Con-
versely, for a softening NES (γ3 < 0), it exists only if
ω j < ωa. This observation is consistent with the fact
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that theNES can resonatewith onemode only if the fre-
quency backbone passes through its natural frequency.
Therefore, if themode has a natural frequencyω j larger
than the linear natural frequency of the NESωa, only in
the case of hardening NES the frequency backbone of
the NES can reach ω j . The opposite is valid for a soft-
ening NES. This implies that, for a hardening NES, ωa

should be smaller or equal to the smallest natural fre-
quency of the primary system (ωa ≤ ω1). Contrariwise,
for a softeningNES,ωa should be larger than the largest
natural frequency of the primary system (ωa ≥ ωn). In
general, hardening NESs have ωa = 0.

Although the passages just presented do not demon-
strate the existence of the interaction points, a numeri-
cal example presented in [29] illustrates their practical
relevance for the case of a purely cubic NES. In the
following of this work, they will be utilized to study
the mutual effect of the amplitude of oscillation of dif-
ferent modes on the NES and to present the inverted
RCC.

4 Study for a two-DOF host system

4.1 System description

An undamped two-DOF chain ofmasses, with identical
masses and stiffnesses, is considered as a host system,
as illustrated in Fig. 2. The equations of motion with an
NES attached to the second mass read:

mẍ1 + 2kx1 − kx2 = 0

mẍ2 − kx1 + 2kx2 + εẍ3 = 0

εẍ3 + ca (ẋ3 − ẋ2) + fnl(x3 − x2) = 0 (28)

where, without loss of generality, we assume all dimen-
sionless quantities, besides m = 1, k = 1, ε = 0.02

m m

m
a

k kk

x1 x2

Fig. 2 Two-DOF mechanical host system with an NES con-
nected to the second mass

and ζa = 0.05 (these numerical values are used through-
out the whole study); fnl(z) is the absorber’s restor-
ing force. The natural frequencies are ω1 = 1 and
ω2 = √

3, which exclude internal resonances. The
modal mass normalized eigenvectors at the location of
the second mass are u21 = √

2/2 and u22 = −√
2/2.

A hardening and a softening restoring force will be
compared, namely

Hardening: fnl(z) = εz3

Softening: fnl(z) = ε arctan(20z).
(29)

In modal coordinates, the equations of motion are:

q̈1 + 2ζ1ω1q̇1 + ω2
1q1 = u21ε

(
2ζaω1 ż + fnl(z)

ε

)

q̈2 + 2ζhω2q̇h + ω2
2qh = u22ε

(
2ζaω1 ż + fnl(z)

ε

)

Hardening : z̈ + 2ζaω1 ż + z3 =
n∑
j=1

ul j q̈ j

Softening : z̈ + 2ζaω1 ż + arctan(20z) =
n∑
j=1

ul j q̈ j .

(30)

4.2 Slow invariant manifold

The SIM for the hardening NES, where n = l = 2 and
γ3 = 1, is described by

u221ω
4
1a

2
1 = b21

((
ω2
1 − γ3

4

(
3b21 + 6b22

))2 + 4ζ 2a ω4
1

)

u222ω
4
2a

2
2 = b22

((
ω2
2 − γ3

4

(
3b22 + 6b21

))2 + 4ζ 2a ω2
1ω

2
2

)
,

(31)

while the SIM for the softening NES is given by

u221ω
4
1a

2
1 = b21

((
ω2
1 − G1(b1, b2)

)2 + 4ζ 2
a ω4

1

)

u222ω
4
2a

2
2 = b22

((
ω2
2 − G2(b1, b2)

)2 + 4ζ 2
a ω2

1ω
2
2

)
.

(32)

G1 and G2 can be obtained from solving the inte-
gral (16); however, an analytical solution to that inte-
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gral cannot be obtained with standard techniques
while numerically computing this integral is very slow.
Therefore, for plotting the manifold and studying its
stability, the integral is solved semi-analytically by
exploiting a polynomial least square approximation.
This approximation allows for a fast and converging
continuation and stability computation of (32), simi-
larly as in [29].

In the special case where there is only a single active
mode, we have ah �= 0, bh �= 0, a j = b j = 0 where
j �= h. Accordingly, an exact analytical expression for
Gh(bh) for the softening NES is found directly through
harmonic balancing without resorting to a refitting of
polynomial series. Solving the single integral (16) for
that case:

Gh(bh) = 1

2πBh

∫ 2π

0

× arctan
(
20
(
Bhe

iTh + B∗
h e

�iTh
))

e−iTh dTh

=
√
400b2h + 1 − 1

10b2h
(33)

4.3 SIMs with no activated other modes

The case where only a single mode is active for a hard-
eningNEShas been extensively studied in the literature
[11,28–30,33,41,56,57]. The curves in Fig. 3a–b and
c–d depict the SIMs for the hardening and softening
stiffness, respectively. All SIMs have the same topol-
ogy: three branches, of which the dashed middle one is
unstable, separated by two folds. The left stable branch
is suboptimal, as for this branch, the absorber rela-
tive displacement (bh) is low; consequently, the decay
will be slow, as indicated by the first equation of (21).
(We remind that the host system damping is neglected,
and the absorber relative velocity is the only source of
energy dissipation.) The right branch has high absorber
activity and, as such, enables fast energy decay. If the
dynamics start on the right branch, the NES engages in
efficient targeted energy transfer (TET). It was estab-
lished in [28,33,57] that, to ensure TET, the initial
energy of the primary system should be above the fold
in the local maximum. For energy levels between the
two folds, the TET triggering depends on the system’s
initial conditions.

4.4 SIMs with slightly activated other mode and
interaction points

Let us now consider the case of one mode of the pri-
mary system strongly activated and the other one only
slightly.

4.4.1 Hardening stiffness

The SIMs for the hardening stiffness are shown in
Fig. 4. To reduce the dimensionality of the problem
(see Eq. (21)), Fig. 4a and b is obtained by assuming
a constant a2, which allows 2-dimensional projections
of the SIM. For a2 = 0.01, the projection of the SIM in
the a1, b1 space (Fig. 4a) exhibits the typical 3-branch
curve with two folds, the stable left and right branch,
and the unstable middle branch. It is practically identi-
cal to the SIM for a single activated mode in Fig. 3a.

By slightly increasing the primary system’s second
vibration mode’s amplitude a2, a tongue appears on
the right branch of the SIM, which is the branch with
the best dissipation performance. The tongue bends to
the left for increasing a2, decreasing b1 for constant a1;
the practical effect of this phenomenon is a reduction in
the dissipation rate, which is proportional to b1. Thus,
even a small amount of a2 will decrease the perfor-
mance of the NES in dissipating a1. As expected, the
tongue’s onset is on the interaction point b1-b2, marked
by a blue dot in Fig. 4a. To clarify this aspect, we note
that the interaction point has coordinate a1 = 1.02—as
identified through Eq. (27)—that is the value of a1 for
which b2 is maximal. This is illustrated by the curve
in Fig. 4b, which resembles a resonance curve. From a
purely analytic perspective, this means that b2 cannot
be neglected in the first equation of (31). In practice,
it means that energy of the host system’s second mode
is pumped into the NES. As a2 increases, the peak in
Fig. 4b, moves to the right, i.e., to higher a1 values;
accordingly, the tongue in Fig. 4a moves upwards, also
to higher a1 values.

The effect on a2 of small, but not negligible, a1 val-
ues is now studied through Fig. 4c and d, which are
analogous to Figs. 4a and b, respectively, with the dif-
ference that now the second mode of the primary sys-
tem is the one fully activated (a2 �= 0), while a1 is
small. Referring to the SIM in Fig. 4c for a1 = 0.01,
we note that now the interaction point b2-b1 is on the
left branch, i.e., the branch with worse dissipation per-
formance. The position of the interaction point sug-
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(a) (b)

(c) (d)

Fig. 3 SIMs for the system in Eq. (30), assuming energy on a single mode of the primary system. a and b refer to the hardening case,
c and d to the softening one; dashed lines indicate unstable solutions

gests that increasing a1 will have a major effect on
the left branch, which is less relevant concerning the
absorber’s performance. This observation is fully con-
firmed by increasing a1; in fact, also this time, a tongue
is generated in the vicinity of the interaction point, as
expected. Additionally, even a small value of a1 lowers
the left branch, and the branch becomes rapidly unsta-
ble (for a1 = 0.15); accordingly, the required threshold
a2(0) to jump to the right branch and engage in TET
decreases. In other words, a small a1 value improves
the ability of the absorber to dissipate vibrations in the
secondmode. Regarding the relation between a2 and b1
illustrated in Fig. 4d, the peak of the curve now bends

to lower a2 values for increasing a1, differently from
the previous case, illustrated in Fig. 4b.

Thus, for hardening stiffness, a small amount of a2
(higher frequency mode) decreases the NES perfor-
mance for a1 (lower frequency mode). Conversely, a
small amount of a1 (lower frequency mode) increases
the NES performance for a2. Later on, when the modes
are both activated significantly, this will cause the res-
onance capture cascade effect, where the presence of a
large amount of energy on the primary system’s second
mode (large a2) will drastically reduce b1, and thus the
dissipation of a1, while the presence of a large amount
of energy on the primary system’s first mode (large a1)
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(a) (b)

(c) (d)

Fig. 4 Sections of the SIM for a hardening NES, to study the
effect of slightly activated modes. a a1 − b1 SIM section for
several constant a2; b the corresponding b2/a2 − a1 curve; c

a2 −b2 SIM section for several constant a1; d the corresponding
b1/a1 − a2 curve

will force a2 to dissipate quickly. Only after a2 is dis-
sipated and sufficiently low, the efficient right branch
of the SIM in the a1, b1 space is reinstated, and a1 is
dissipated efficiently. This phenomenon explains the
sequence from high-to-low modal dissipation by the
NES, as thoroughly discussed in [29].

4.4.2 Softening stiffness

The SIMs for the softening stiffness case are depicted
in Fig. 5. Comparing Fig. 5 with Fig. 4, we note differ-

ent positions of the interaction points. In Fig. 5a and
c, the interaction points are on the left and on the
right branch, respectively, while in Fig. 4a and c they
were positioned oppositely. This observation suggests
that, for a softening nonlinearity, a small a2 value will
improve energy dissipation on the first mode, while a
small amount of energy on the first mode of the pri-
mary system (a1) will reduce energy dissipation of the
second mode, exactly the opposite of what occurs in
the hardening case. This scenario is confirmed by the
tongues illustrated in Fig. 5a and c. In both cases, the
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(a) (b)

(c) (d)

Fig. 5 Sections of the SIM for a softening NES, to study the
effect of slightly activated modes. a a1 − b1 SIM section for
several constant a2; b the corresponding b2/a2 − a1 curve; c

a2 −b2 SIM section for several constant a1; d the corresponding
b1/a1 − a2 curve

tongues are generated in correspondencewith the inter-
action points. The same argumentation presented for
the hardening case is valid also for the softening case
but in an opposite way. In Fig. 5b and d, the trend of the
NES amplitude for the slightly activated mode (respec-
tively, b2 and b1) is illustrated. The peak moves to the
left when the slightly activated mode is the higher one,
and to the right in the other case. The opposite was
observed for the hardening case.

According to these observations regarding the SIM
evolution for softening stiffness, a small amount of a2
(higher frequency mode) will increase the NES per-

formance for a1 (lower frequency mode). Conversely,
a small amount of a1 (lower frequency mode) will
decrease theNESperformance fora2 (higher frequency
mode). Later, it will be shown that these modal interac-
tions are the mechanism behind the inverted resonance
capture cascadewhen bothmodes are significantly acti-
vated.
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4.5 SIMs with strongly activated other modes

4.5.1 Effect on SIM

In Sect. 4.4, it was illustrated that a slightly activated
other mode affects NES performance in dissipating
the strongly activate mode. Now, we consider the
case where both modes are significantly activated. The
a1 −b1 and a2 −b2 sections of the SIM under strongly
activated other modes for hardening stiffness are pre-
sented in Fig. 6a and b for modes 1 and 2, respectively.
On the a1 − b1 section, the tongue protruding from
the right branch eventually connects to the origin for
increasing a2. A new suboptimal left branch appears
that, for a large rangeofa1 (0−4.5), has a smallb1, dete-
riorating the NES performance for suppressing vibra-
tions of the first mode. Regarding the a2 − b2 section,
strongly activating a1 not only makes part of the left
branch unstable but also pushes the fold downwards.
As such, the vibration threshold for a2 decreases sig-
nificantly, improving the energy dissipation properties
on the second mode for a wide range of a2. The SIM’s
sections for the softening stiffness, shown in Figs. 6c
and d, exhibit the opposite effect. The local maximum
of the a1−b1 SIM section is pushed downwith increas-
ing a2, which facilitates effective dissipation of the first
mode’s vibration energy. Conversely, a new subopti-
mal branch is generated in the a2 − b2 SIM section for
increasing a1, which deteriorates the dissipation per-
formance of the second mode. In the next section, time
series obtained from direct simulations are projected
on the SIM to validate the relevance of its shape with
respect to the system dynamics and NES performance.

4.5.2 Time simulation with constant modes

To validate the SIMs and the conclusions drawn from
them, Eq. (30) is integrated in timewith anODE solver.
To facilitate the comparison, one mode of the primary
system is artificially kept constant by imposing the
right-hand side of the first or the second equation of
(30) equal to zero. Although this is a mathematical
artifact, it enables us to validate the observations on
the SIMs provided so far.

Results regarding both hardening and softeningNES
are provided in Fig. 7. Figure7a–d refers to the case
of a2 constant, while Fig. 7e–h to a1 constant. ah is

obtained from qh as ah =
√
q2h + q̇h/ωh and bh from

z by applying band-pass filters to filter once around ω1

and once around ω2. Then bh =
√
z2h + żh/ωh where

zh is a filtered version of z around ωh . The filtering
causes unavoidable quantitative errors, which do not
alter the qualitative dynamical scenario.

As discussed before regarding the hardening stiff-
ness, for a2 > 0, a new suboptimal branch is generated
in the a1 − b1 SIM section, as illustrated in Fig. 7a.
For a2 = 0, modal amplitudes extracted from the cor-
responding numerical simulation for a1(0) = 3 are
depicted on the SIM in a dotted black line, and for
a2 = 0.2 in a dotted orange line. The corresponding
time evolution of a1 and b1 is plotted in Fig. 7c and d
with their corresponding colors. For a2 = 0, the system
dynamics is attracted to the right branch of the a1 − b1
SIM section, and the time evolution of a1 shows that the
dissipation of this modal energy takes approximately
1500 time units. At the same time, b1 is nearly con-
stant until a sudden drop at about t = 1500, after which
the dynamics converges to the SIM’s left branch, with a
small b1 amplitude.When a2 = 0.2, the SIM is heavily
distorted. The system converges to a SIM branch with
very low b1 values, resulting in very poor energy dissi-
pation. Evolution of a1 and b1 in time (orange lines in
Fig. 7c and d) confirms this observation. We note a sig-
nificant quantitativemismatch between the SIMand the
a1 − b1 trend observed from simulations (orange lines
in Fig. 7a), which is probably caused by the presence
of (sub)harmonics in the absorber vibrations; neverthe-
less, the qualitative behavior is still confirmed.

As already discussed, the softening stiffness causes
an opposite effect, as illustrated by the SIM section in
Fig. 7b. In the figure, the dotted yellow and purple lines
correspond to time integrations obtained for a1(0) =
1, where either a2 = 0 (in yellow) or a2 = 0.4 (in
purple). The time evolutions of the modal amplitudes
are shown in Fig. 7c and d with their corresponding
colors. In this case, the suboptimal left branch of the
SIM is pushed down by increasing a2. For a2 = 0,
the numerical simulation shows a stagnant decay. The
inset in Fig. 7b illustrates that the dynamics is attracted
to the left suboptimal branch of the SIM; this occurs
because a1(0) = 1 is below the local maximum of the
SIM. By increasing a2 to 0.4, the left branch is pushed
down and becomes partly unstable. Consequently, the
systemdynamics is attracted to the optimal right branch
of the SIM, and the time evolution of a1 shows a rapid
decay; b1 initially attains high amplitudes during the
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(a) (b)

(c) (d)

Fig. 6 Sections of the SIM for hardening a,b and softening c, d
NES, to study the effect of strongly activated modes. a a1 − b1
SIM section for several constant a2 (hardening NES); b a2 − b2

SIM section for several constant a1 (hardening NES); c a1 − b1
SIM section for several constant a2 (softening NES); d a2 − b2
SIM section for several constant a1 (softening NES)

dissipation; then, its value drops as the system jumps
to the left-most stable branch of the SIM.

We now study the effect of a1 �= 0 for energy dissi-
pation of the second mode (a2). The SIM sections for
hardening stiffness are given in Fig. 7e. Modal ampli-
tudes extracted from numerical simulations are super-
imposed to the SIM for the cases of a1 = 0 (black
dotted line) and a1 = 0.4 (orange dotted line); ini-
tial conditions were set such that a2(0) = 0.8. The
time evolutions of the modal amplitudes a2 and b2
are depicted in Fig. 7g and h, respectively, with their

corresponding colors. When a1 = 0 (black lines),
a2(0) = 0.8 is below the SIM’s local maximum, and
the system dynamics converges to the suboptimal left
branch, resulting in stagnant decay of a2 and small b2
values. Increasing a1 (a1 = 0.4), this branch becomes
unstable, and the dynamics converges to the optimal
right branch, with corresponding rapid decay of a2 and
high b2 values. As soon as the local minimum of the
SIM section in Fig. 7e is reached, the system dynamics
jumps to the left branch, resulting in small b2 values
and a residual a2.
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Fig. 7 Modal amplitudes
extracted from numerical
simulations of Eq. (30),
overlapped to the
analytically obtained SIM.
a,e hardening NES, b, f
softening NES; a–d a2
artificially kept constant and
a1 decreasing in time, e)–h
a1 artificially kept constant
and a2 decreasing in time;
a, b, e, f sections of the
SIM, c, d, g, h) evolution in
time of modal amplitudes.
Initial conditions for the
hardening case are
a1(0) = 3 and a2(0) = 0.8,
while for the softening case
a1(0) = 1 and a2(0) = 1. In
each case, either a1 or a2 is
kept constant

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Again the opposite happens for the softening stiff-
ness. Figure7f shows the SIM and modal amplitudes
from numerical simulations for the cases of a1 = 0
(yellow lines) and a1 = 0.5 (purple lines); initial con-
ditions are set such that a2(0) = 1. The time evolution
of the modal amplitudes is represented in Figs. 7g and
7h with their corresponding colors. For a1 = 0, the
system dynamics converges to the right branch of the
SIM, while for a1 = 0.5, it goes toward a new subop-
timal branch created from the fold of the modal inter-
action. Accordingly, Fig. 7g and h shows a fast decay
for a1 = 0 and slow decay for a1 = 0.5.

To sum up the analysis performed in this section,
our investigation reveals that for a hardening NES, a
small amount of energy on the higher frequency mode
is sufficient to degrade the dissipation performance of
the lower frequency mode. On the other hand, vibra-
tion energy on the lower frequency mode does not neg-
atively affect the energy dissipation of the higher fre-
quencymode. In contrast, the opposite is true for a soft-
ening NES. In some sense, a hardening NES appears
to prioritize energy dissipation of the higher frequency
mode, while a softeningNES prioritizes the energy dis-
sipation of the lower frequency mode. In the next sec-
tion, the complete system is simulated, and both modes
will be able to interact and decay concurrently, which
enables the triggering of the resonance capture cascade
phenomenon.

5 (Inverted) resonance capture cascade

The full dynamical system in Eq. (28) is now simulated
with both modes initially equally activated in terms of
kinetic energy, i.e., a1(0) = 1 and a2(0) = 1/

√
3.

5.1 Hardening stiffness: RCC

At first, we consider the hardening NES. The result
of the simulation is shown in Fig. 8. The vibrations of
the physical coordinates x1 and z are shown in Figs. 8a
and b. First high-frequency vibrations of the primary
system decay and then low-frequency vibrations. The
wavelet transformation of the NES relative displace-
ment z illustrates that the NES engages sequentially
with the vibration modes, from high to low frequency,
the transition being at about t = 90. This phenomenon
is called RCC and is well known to occur for the con-

ventional hardening cubic-stiffness NES. RCC is even
more clearly recognizable looking at the modal vibra-
tion content of the primary system, depicted in Figs. 8d
and e, where first only the second mode (a2) decays.
At about t = 90, the first mode (a1) engages in the cas-
cade and start decaying. The modes in the NES show a
high, near-constant amplitude in the second mode (b2)
before switching to the first one (b1). The time evolu-
tion of the modal amplitudes is projected on the SIM
sections a1 − b1 and a2 − b2 in Figs. 8f and g. On the
a1−b1 section, the numerical simulation (dotted orange
line) first sits on the black SIM, where a2 = 1. Only
once a2 is sufficiently decayed, the dynamics converges
to the optimal right branch of the yellow SIM. On the
a2−b2 section, the system dynamics immediately con-
verges to the optimal right branch. Once the branch is
descended, the numerical simulations are attracted to
the left branch.

In order to have a more comprehensive illustration
of the RCC and its connection to the SIM, a 3-dimen-
sional representation of the SIM is provided in Figs. 8h
(a1, a2, b1) and 8i (a1, a2, b2); in the figures, the modal
amplitudes collected from the numerical simulation are
overlapped to the SIM. The curves clearly show how
the SIM provides a consistent qualitative description of
the system dynamics.

5.2 Softening stiffness: IRCC

We now consider the case of a softening NES through
a numerical simulation, whose results are provided in
Fig. 9. The vibrations of the physical coordinates x1
and z (Fig. 9a and b) show an opposite picture com-
pared to a hardening stiffness NES. The NES vibrates
first with the lower frequency mode and then the
higher frequency mode, which can be better seen in
the wavelet transform of the NES of Fig. 9c. Accord-
ingly, in the host system, the lower frequency mode is
dissipated first. The same is observed in modal coor-
dinates (Fig. 9d and e), where first a1 decays and b1
is large. Only once a1 is sufficiently small, a2 decays
as well, thanks to increased b2 values. The SIMs and
numerical simulations in Fig. 9f and g show good qual-
itative agreement; we note that the dynamics is first
attracted to the right branch of the a1 − b1 SIM sec-
tion (Fig. 9f) and to the left branch of the a2 − b2 sec-
tion (Fig. 9g). Once the local minimum of the SIM
is reached, the system dynamics jumps to the other
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Time simulation of (28) where fnl = εz3 is the hard-
ening NES stiffness, initial conditions such that a1(0) = 1 and
a2(0) = 1/ω2. a first mass displacement x1; b absorber rel-
ative displacement z; c absorber relative displacement wavelet
transform; d primary system’s modal amplitudes a1 and a2; e

NES’s modal amplitude b1 and b2; f a1 − b1 SIM sections with
overlapped modal amplitudes varying in time; g a2 − b2 SIM
sectionwith overlappedmodal amplitudes varying in time; h, i 3-
dimensional SIM representations with overlapped modal ampli-
tudes varying in time

branch. A more comprehensive view of the compari-
son between the SIM and the simulated dynamics is
provided by the 3-dimensional representation of the
SIM in Figs. 9h and i. Considering the main character
of the dynamical phenomenon just described, i.e., that
the NES first interacts with low-frequency modes, and
then with high-frequency modes, this kind of motion

is named inverted resonance capture cascade. Observe
that the performance of both the softening and harden-
ing NES is in the some order, the hardening NES dis-
sipates the energy over about 370 time units, while the
softening NES takes 310 time units. Finally, in Fig. 9c,
an increasing frequency in theNES is observed after the
RCC. This is because the NES loses synchronization
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 Time simulation of (28) where fnl = ε arctan(20z) is the
softening NES stiffness, initial conditions such that a1(0) = 1
and a2(0) = 1/ω2. a first mass displacement x1; b absorber rel-
ative displacement z; c absorber relative displacement wavelet
transform; d primary system’s modal amplitudes a1 and a2; e

NES’s modal amplitude b1 and b2; f a1 − b1 SIM sections with
overlapped modal amplitudes varying in time; g a2 − b2 SIM
sectionwith overlappedmodal amplitudes varying in time; h, i 3-
dimensional SIM representations with overlapped modal ampli-
tudes varying in time

with the modal frequencies of the host system at lower
amplitudes. At these amplitudes, the NES reverts to its
own natural frequency, which increases for decreasing
amplitudes as seen in Sect. 2. For the cubic hardening

NES, the frequency in the NES decreases after RCC,
as it loses synchronization with the modes and jumps
to a lower backbone of nonlinear mode, which has a
decreasing frequency [26].
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(a) (b)

(c) (d)

Fig. 10 Evolution of the modal amplitudes in time, for the four-
DOF chain of masses, with an attached NES. a, b hardening
NES, c, d softening NES. a, c evolution in time of the host sys-

tem’s modal amplitudes, b, d wavelet transformation of the NES
relative displacement

5.3 Four-DOF system

In order to further validate the existence and engineer-
ing relevance of the IRCC, we now consider a four-
DOF host system. The system consists of an undamped
chain of four unitmasses attached to each other through
identical unit springs; its dimensionless natural fre-
quencies are 0.618, 1.1756, 1.618 and 1.9021. TheNES
is attached to the secondmass. In practice, the system is
an extension of the one shown in Fig. 2. First, we con-
sider the case of a hardeningNES, then a softening one.
The system is studied solely through numerical simula-
tions to validate the existence of the IRCC. The results

of the numerical simulations are illustrated in Fig. 10.
Figure10a and b refers to the hardening NES, while
Fig. 10c and d to the softening NES. In the figures, the
decay in time of the host system’s modal amplitudes
and the wavelet transformation of the NES relative dis-
placement are illustrated for the two cases, respectively.

Referring to the hardening case, we observe
(Fig. 10a) how, initially, modal amplitude a4 rapidly
decreases, while a1, a2 and a3 do not decrease at all—
they actually slightly increase, as also observed in [29].
As proved by the wavelet transformation in Fig. 10b, at
the same time, the NES is tuned to the fourth mode.
Once a4 reaches a small enough value, the NES starts
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oscillating according to the third mode, and simulta-
neously a3 rapidly decreases. After that, when also a3
has a small enough value, the NES tunes to the second
mode, and the second vibration mode of the host sys-
tem (a2) is dissipated. Finally, the NES tunes to the first
mode, completing the RCC. The higher the mode, the
faster the dissipation because of the higher frequency
involved.

We now consider the softening NES. Looking at the
evolution of the modal amplitudes in time (Fig. 10c),
the expected IRCC can be recognized. Namely, first
a1 decays, then a2, after that a3 and finally a4. The
mechanisms are analogous to the one observed for the
hardening case but with an inverted order. The inverted
cascade is even more evident from the wavelet trans-
formation of the NES relative displacement (Fig. 10d).
The NES vibrates according to the four modes of the
primary system, from the first to the fourth one. The
wavelet transformation shows that, initially, the NES
vibrates also according to the fourth mode, although
with a relatively small intensity, which causes a par-
tial dissipation of the fourth mode concurrently to the
first one. This effect is not part of the IRCC and is
probably due to modal interactions, which are hard to
predict but often present. Indeed, the larger the num-
ber of activated modes of the primary system, the more
modal interactions are developed, even if the natural
frequencies have irrational ratios. Modal interactions
can be identified from thewavelet transformation of the
NES relative displacement, both for the hardening and
the softening cases (Fig. 10b and d). This phenomenon
was also observed in [29]. To predict them analytically,
modal interactions should be considered while obtain-
ing the SIM.However, this significantly complicates its
derivation and enlarges its dimension. It is, therefore,
out of the scope of this study.

Regarding the performance of the NESs, while it
was similar in the two-DOF case for the softening and
hardeningNES, here the softeningNES is clearly supe-
rior, as it is better in dissipating the slower modes. The
softening NES is able to dissipate all modes in just over
1600 time units, while in the hardening case, the host
system still contains a significant amount of energy in
the first mode even after 3000 time units. However,
since neither NES was optimized, any comparison of
their performance is limited in scope.

To verify the generality of the phenomenon, simu-
lations of the system with an attached softening NES,
having the restoring force function sgn (xa) 3

√|xa| (see

Sect. 2), were also performed. However, they did not
exhibit any qualitative difference from the NES with a
saturating restoring force considered in the rest of the
paper. Therefore, the corresponding figure is omitted
for the sake of brevity.

In summary, our analysis confirms that a hardening
NES triggers an RRC, dissipating energy one-by-one
from the highest to the lowest frequency mode, and
reveals that a softening NES leads to an IRCC, where
energy is dissipated from the lowest to the highest fre-
quency mode.

6 Conclusions

This study unveiled the existence of the so-called
inverted resonance capture cascade (IRCC), which
indicates the subsequent engagement of an NES with
thevibrationmodesof thehost system, starting from the
lowest frequency to the highest one. This phenomenon
is opposite to the well-known RCC, where the NES
engages first with the highest frequency mode and last
with the lowest frequency one. The transition from the
classical RCC to the IRCC is related to adopting a soft-
ening stiffness characteristic of the NES instead of a
hardening one. The performed analysis exploits multi-
dimensional SIMs obtained by combining harmonic
balance with a multiple-scale technique. By compar-
ing modal amplitudes extracted from numerical simu-
lations, the relevanceof theSIM to the systemdynamics
was validated considering a two-DOF primary system;
the SIM enabled us to explain the dynamical phenom-
ena involved. The IRCC was also illustrated for a four-
DOF primary system.

Froman engineering perspective, the IRCCprovides
several benefits with respect to the classical RCC. The
main one is that low-frequency modes are usually the
most dangerous from a structural point of view since
they cause larger displacements than higher frequency
modes. Thus, their quicker dissipation is an important
benefit.

Several aspects were overlooked in this study, which
should be further investigated. In particular, we noted
that modal interactions and combinatorial resonances
have an important role in the NES dynamics, which
was not analyzed. However, observing the frequency
content of NES from the simulations, these resonances
do not seem to qualitatively affect the IRCC, as also
observed in [29]. A more involved analytical approach
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is required for their analysis, which is out of the scope
of this paper.

The practical realization of a softening NES poses
specific challenges. Although previous studies
addressed the realization of NESswith almost arbitrary
stiffness forces [30,36,44–49], theywere never utilized
for real engineering applications, but only for academic
studies; therefore, potential technical limitation might
arise for their industrial exploitation.

In the present study, the IRCCwas investigated from
a purely phenomenological perspective, and no attempt
to optimize its performance was made. Optimization is
an important aspect that should be evaluated for assess-
ing the real benefit of a softening NES. The optimiza-
tion should also consider various shapes of the restoring
force function. This is an essential step for comparing
the performance of hardening and softening NESs.
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