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Abstract

Conventional nonlinear energy sinks (NES) are considered to be a more robust
alternative to linear vibration absorbers such as the tuned-mass-damper (TMD).
While the conventional NES has a larger efficient frequency bandwidth than the
TMD, it is only really efficient for a small energy range. This implies a deteriora-
tion of the NES’s mitigation properties if the primary system’s amplitude varies.
To overcome this issue, other researchers resort to increasing the complexity of
the NES by adding degrees-of-freedom. Here, another line of thought is presented,
by proposing an unconventional stiffness characteristic. To increase the energy
bandwidth the NES in this paper features a non-smooth, periodically extended
stiffness characteristic. This NES is attached to an uncertain primary system
and its performance is compared with that of the conventional NES and of the
TMD by deriving the slow invariant manifolds (SIMs) in transient 1:1 resonance.
The SIMs are curves that relate the vibration amplitudes of the primary system
and the NES, and serve as an easy and computationally efficient tool to analyze
performance. The research in this paper will prove that the newly proposed NES
can be both robust regarding energy and frequency uncertainty, by considering
the novel periodically extended stiffness characteristic.

Keywords: Nonlinear Energy Sink, Passive Vibration Control, Dynamic
Vibration Absorber, Tuned Mass Damper, Periodic Stiffness

1. Introduction

The linear tuned-mass-damper (TMD) vibration absorber has been investi-
gated and implemented as a means to mitigate vibrations of a mechanical struc-
ture, since its inception in a 1909 [1] patent. It was further improved in a 1928
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textbook [2]. These are light-weight auxiliary devices, consisting of a mass that
is spring-connected to the vibrating system. An efficient TMD is designed by ap-
proximately matching the TMD’s natural frequency with the vibration frequency
of the mechanical structure. This requires accurate knowledge of the vibratory
properties of the primary system. If the frequency of vibration shifts because of
uncertainties or modifications to the primary system, the TMD performance dete-
riorates. Therefore, researchers have proposed the nonlinear energy sink (NES),
a light-weight device consisting of a mass that is nonlinearly connected to the
primary system [3, 4, 5, 6, 7]. The nonlinearity gives the NES a variable natu-
ral frequency and as such a ’self-tuning’ property [8]. This means that an NES
can efficiently mitigate vibrations over a wide frequency bandwidth. As such, it
can efficiently deal with shifting vibration frequencies and vibrations that consist
of several modes [9, 10, 11]. Although the NES has shown to have attractive
properties with regards to frequency bandwidth, its main limitation lies in its
narrow energy bandwidth. This means that it is only efficient for a limited range
of vibration amplitude levels. In the aforementioned investigations of the NES,
the connecting stiffness is almost exclusively a hardening cubic stiffness charac-
teristic. However, as shown later in this study, this choice of characteristic limits
the NES performance.

To overcome the downsides of the conventional NES, literature follows two
lines of thought. Either the complexity of the NES is increased by adding degrees-
of-freedom (DOF)/additional mechanisms, or other stiffness characteristics are
proposed. In the first line of thought, works have investigated 2DOF series NESs
[12], a chain of NESs [13], or a conventional NES featuring an additional pendu-
lum [14]. A complex mechanism was added to a conventional NES in [15] where
two masses oscillated with a constant frequency on top of the NES. This increased
dimensionality of the NES complicates the analysis of the global dynamics.
In the other line of thought, researchers investigate slight variations or additions
to the conventional NES stiffness characteristics. In [16, 17] an NES possessing
bistability properties was investigated. Other polynomial stiffnesses were fea-
tured in [18, 10]. Recently, an interesting characteristic was proposed in [19]. It
consists of two piecewise cubic characteristics. The transition from the first to
the second characteristics causes a non-smooth descent before hardening again.
The performance of NESs with slightly different characteristics are only slightly
better than the conventional NESs. However, the proposed characteristics are
often based on mechanisms that mimic these stiffnesses. The conventional cubic
stiffness can be attained with transversely loaded strings [20], the bistable stiff-
ness with a pre-stressed beam or through permanent magnets [21] and the two
piecewise characteristics with a magnet assembly [19].

Other works have proposed a periodic stiffness function with rotational NES
variants. In [22], authors proposed the so-called rotational NES, consisting of
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a rotating eccentric mass, attached to the primary system to be controlled. In
spite of its simple and compact design, several studies [22, 23, 24, 25, 26, 27, 28]
proved the good and broadband performance of the rotational NES, however,
this is achieved only if rotational motion is triggered [22, 25, 26]. Furthermore,
this kind of NES is very sensitive to its damping [26] and initial conditions [22].
Its effectiveness was evaluated analytically [22, 23, 25], numerically and experi-
mentally [22, 24, 26, 27], against impulsive excitations [22, 23, 24, 25, 26, 27] and
for vortex-induced vibration mitigation [28].

In this work, the second line of thought will be followed but the authors will
shy away from the slight variations on the cubic stiffness by proposing an un-
conventional stiffness characteristic, a periodically-extended polynomial stiffness.
For small displacements, this characteristic is a cubic polynomial stiffness, but
for larger displacements descents to then again harden as a cubic polynomial.
This descent and hardening is periodic. The authors are motivated by recent
works that propose and implement simple devices that can tailor-make any non-
linear stiffness characteristic. In [29, 30], this tailor-made stiffness is attained
by compressing a spring along an arbitrarily shaped force-profile. The desired
stiffness was obtained by 3D-printing or CNC-machining this profile with a shape
that approximately corresponds to the elastic potential energy of the proposed
stiffness characteristic. Others have proposed a topology optimized 3D-printed
beam, but have only realized slightly hardening spring characteristics [31].
To analyze the performance of the proposed NES and compare it to the conven-
tional NES in a computationally efficient manner, the slow invariant manifold
(SIM) is exploited. The SIM is a static expression that relates the primary sys-
tem’s vibration amplitude to the NES’s amplitude. It has been used to find
conditions for efficient energy transfer and can be directly related to the speed
and duration of the energy transfer under transient conditions [32, 10]. The re-
search in this paper will prove that an efficient and robust (in both frequency
and energy) single DOF NES can be obtained by considering an unconventional
stiffness.
To show this, the paper is structured as follows. Section 2 presents the novel NES
and the primary system. The considered primary system has an uncertainty on
its stiffness and thus on its natural frequency. Then, in section 3, the SIM of the
novel NES is derived in function of the uncertainty. It is compared to the SIMs of
the conventional NES and TMD. Stability and dynamics along the SIM is com-
puted. Numerical simulations with the novel NES will confirm that the SIM is
a good predictor of performance. Section 4 investigates the influence of the pri-
mary system’s uncertainty. It will be shown that the novel NES presented here is
superior in frequency and energy bandwidth under certain conditions, compared
to the conventional NES and TMD. Finally, the conclusion is presented.
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Figure 1: The primary system with an NES (a) and the connecting stiffness characteristic of
conventional NESs and of the proposed periodically extended NES (b).

2. Model description and novel stiffness

The studied compound system constitutes the primary system and the NES
and is shown in Figure 1a where m, c, and k are the primary system’s mass,
damping and stiffness and where mna, cna and F (·) are the NES’s mass, damping
and nonlinear connecting stiffness characteristic, respectively. The stiffness klin

is a linear connecting stiffness, only present if a TMD is considered as a vibration
absorber. Finally, x and xna indicate the translational displacement of the pri-
mary system and of the NES, respectively. The system’s dynamics are described
by the following set of differential equations:

mẍ+ cẋ+ kx+ cna(ẋ− ẋna) + klin(x− xna) + knaF (x− xna) = 0

mnaẍna + cna(ẋna − ẋ) + klin(xna − x) + knaF (xna − x) = 0
(1)

where kna is the proportionality factor of connecting nonlinear stiffness. When
the absorber is a NES, then klin = 0, if it is a TMD, kna = 0 and finally if it is
a simple dynamic viscous damper, also called the Lancaster damper, then both
klin = 0 and kna = 0. The primary system’s stiffness k consists of an assumed
stiffness ka (where a stands for assumed) and an unknown stiffness variation ku

(where u stands for unknown), k = ka + ku. The assumed stiffness ka is what the
vibration absorber designer assumes when tuning the DVA, while ku expresses a
detuning unknown to the designer.
The nonlinear connecting stiffness F (z), where z = xna−x, is a periodic extension
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in R+ of z3 defined in 0 < z < d, and an extension in R− of z3 defined in
−d < z < 0 to keep the function odd:

F (z) =


(z + i · d)3 −(i+ 1)d ≤ z < −id with i ∈ N+

z3 −d ≤ z ≤ d
(z − i · d)3 id < z ≤ (i+ 1)d with i ∈ N+

(2)

as such d is the periodicity of the extension. This stiffness is plotted in Figure
1b for d = 3. The concept for realizing such a NES is presented in Appendix A.

3. Slow invariant manifold: derivation, stability and numerical simu-
lation

3.1. System

The equations in (1) are divided by the primary mass m:

ẍ+ εω0ξẋ+ (1 + δ)ω2
0x+ εẍna = 0

εẍna + εω0ξna(ẋna − ẋ) + εω2
0γF (xna − x) + εω2

0κ(xna − x) = 0
(3)

with

ω2
0 =

ka

m
δ =

ku

ka
ε =

mna

m
ξna =

cna

mnaω0

ξ =
c

εmω0
γ =

kna

mnaω2
0

κ =
klin

mnaω2
0

(4)

The mass ratio is assumed small, ε � 1. The unknown variation on the
primary stiffness is expressed in δ. Under small ε, if perturbed, the compound
system vibrates with a frequency approximately being ω1 = ω0

√
1 + δ. The

frequency ω0 is the frequency without uncertainty (δ = 0). The dimensionless
time is introduced, τ = ω1t = ω0

√
1 + δt, the derivative to τ is denoted by ′:

x′′ + ε
ξ√

1 + δ
x′ + x+ εx′′na = 0

εx′′na + ε
ξna√
1 + δ

(x′na − x′) + ε
κ

1 + δ
(xna − x) + ε

γ

1 + δ
F (xna − x) = 0

(5)

The differential equation (5) does not have closed-form solution so we search
for a solution for the amplitudes of vibration through harmonic balancing.

3.2. Harmonic balancing

The relative absorber coordinate z = xna − x is introduced. The dynamic
variables x and z are assumed to vibrate with the same frequency, under a 1:1
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resonance. The proposed solution is:
x =

Aejτ − Āe−jτ
2j

z =
Bejτ − B̄e−jτ

2j

x′ =
Aejτ + Āe−jτ

2
z′ =

Bejτ + B̄e−jτ

2

(6)

where A(τ), B(τ) ∈ C. Deriving A(τ)ejτ = ẋ(τ) + jx(τ) and B(τ)ejτ =
ż(τ) + jz(τ) yields after some steps:

x′′ + x = A′ejτ

z′′ + z = B′ejτ
(7)

Inserting (6) and (7) into the absorber (second) equation of (5), we obtain:

B′ejτ +A′ejτ +
ξna√
1 + δ

Bejτ + B̄e−jτ

2
+

γ

1 + δ
F (
Bejτ − B̄e−jτ

2j
)

+
κ

1 + δ
(
Bejτ − B̄e−jτ

2j
)− Bejτ − B̄e−jτ

2j
− Aejτ − Āe−jτ

2j
= 0

(8)

Only the terms with frequency ejτ are kept (harmonic balancing). For the
term F (z), this is determined from the first harmonic of its Fourier’s series,
F (z) ≈ f1e

jτ , a procedure explained in [33]:

f1(B, B̄) =
1

2π

∫ 2π

0
F (
Bejτ − B̄e−jτ

2j
)e−iτdτ (9)

For odd functions of F (Be
jτ−B̄e−jτ

2j ) the integral (9) reduces to:

f1(B, B̄) =
B

2j
G(|B|) (10)

where G(|B|) is a real function [33]. The calculation of f1 for the novel period-
ically extended NES is quite elaborate, and is therefore delegated to Appendix
B. The harmonic balancing of (8) yields:

B′ejτ +A′ejτ +
ξna√
1 + δ

B

2
+

γ

1 + δ

B

2j
G(|B|) +

κ

1 + δ

B

2j
− B

2j
− A

2j
= 0 (11)

3.3. Slow invariant manifold

The slow invariant manifold (SIM) describes the slow dynamics of the system.
In particular, it relates the amplitude of oscillation of the primary system to
the absorber. Following the common approach utilized in the literature [33, 32,
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34, 16, 10], the system is assumed in steady-state conditions. This approach is
not rigorously correct since the system is in transient dynamics, and the only
admissible steady-state solution is the trivial one. However, focusing on the slow
dynamics of the system and temporarily neglecting damping terms in the slow
dynamics, fictitious steady-state solutions can be found setting A′ = B′ = 0. A
more elaborate two-timing scaling procedure section 3.4 will yield the same result.
As illustrated below, this procedure enables us to obtain a function relating the
amplitude of oscillation of the primary system to the one of the absorber. The
complex amplitudes A and B are now written in their polar form A = aejα and
B = bejβ. The equation (11) split up in real and complex parts are:

−a sin(α− β) =
ξna√
1 + δ

b

−a cos(α− β) =b− κ

1 + δ
b− γ

1 + δ
G(b)b

(12)

Then, squaring and then adding the real and complex parts gives the slow invari-
ant manifold (SIM) expression:

a2 =

(
ξ2

na

1 + δ
+

(
1− κ

1 + δ
− γ

1 + δ
G(b)

)2
)
b2 (13)

When studying the NES, then κ = 0 and the SIM is :

a2 =

(
ξ2

na

1 + δ
+

(
1− γ

1 + δ
G(b)

)2
)
b2 (14)

In the case of the TMD (γ = 0 and κ = 1), the expression is reduced to:

a2 =

(
ξ2

na

1 + δ
+

(
1− 1

1 + δ

)2
)
b2 (15)

while for the Lancaster damper, the purely viscous damper with mass, (γ = 0
and κ = 0) to

a2 =

(
ξ2

na

1 + δ
+ 1

)
b2 (16)

The SIM expresses the ratio between the primary mass’s vibration amplitude a
and the relative NES vibration amplitude b. Some SIMs are given in Figure 2 for
ξna = 0.15 and δ = 0. The solid blue line marks the SIM of the TMD, the blue
dashed line indicates the SIM of Lancaster damper and the black curve represents
the SIM for the conventional cubic NES with γ = 0.3 and G(b) = 3b2

4 (see (B.1))
and finally the red curves refer to the SIM for the novel NESs of different values
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Figure 2: The slow invariant manifold for TMD, Lancaster damper, cubic NES and the novel
NES for ξna = 0.15, δ = 0 and γ = 0.3.

d. It is observed that:

� The TMD and Lancaster damper SIMs are straight lines and form a funnel.

� The NESs’ SIMs for a→ 0 are close to the Lancaster line, and have a local
minimum that touches the TMD line.

� The novel periodically extended NES’s SIM is equal to the cubic NES’s
SIM until d, where it branches down, touching the TMD line, and staying
for the most part within the funnel constructed by Lancaster and TMD
lines. The periodically softening and hardening of the stiffness thus moves
the SIM more to the right.

� The novel NES’ SIM moves to the right for increasing d.

3.4. SIM dynamics and stability

The SIM in (14) was found with relatively few calculations. However, it does
not convey the dynamics along the SIM or the stability of the solutions plot in
Figure 2. A procedure to obtain this for other type of NES configurations and
stiffness characteristics is found in [13, 35, 34]. First, the compound system’s
dynamics are analyzed on two time scales, where the fast time the stability of
the SIM branches. and the slow time will yield the same expression as (14) and
dynamics on the SIM. The following is applied to the primary system dynamics
(5) after change of coordinates (6) and (7) and is applied to the absorber equation
(8) (with κ = 0) :

A(τ) = A(τ1, τ2) τ0 = τ, τ1 = ετ

d

dt
=

∂

∂τ0
+ ε

∂

∂τ1

(17)
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Subsequently harmonic balancing and then collecting in terms of order ε0 yields:

∂A

∂τ0
= 0

∂B

∂τ0
+

�
�
�∂A

∂τ0
+

ξna√
1 + δ

B

2
+

γ

1 + δ

B ·G(B, B̄)

2j
− B

2j
− A

2j
= 0

(18)

which express the ’fast’ dynamics. Linearizing (18) around equilibrium B =
B∗+ ∆B eventually results in the following system of linear equations in ∆B and
∆̄B: [

∆̇B
˙̄∆B

]
=

[
a11 a12

a21 a22

]
︸ ︷︷ ︸

Σ

[
∆B

∆̄B

]
(19)

where

a11 = ā22 −
j

2
− ξna

2
+
j

2

∂(B ·G(B, B̄))

∂B

∣∣∣∣
B=B∗

a12 = ā21 =
j

2

∂(B ·G(B, B̄))

∂B̄

∣∣∣∣
B=B∗

(20)

The expressions for ∂(B·G(B,B̄))
∂B and ∂(B·G(B,B̄))

∂B̄
are found in Appendix C. If

any eigenvalue of Σ has a positive real part, then the fixed point B = B∗ is
unstable. The fixed point B∗ lay on the SIM of (14) with the phase determined
from (12). Figure 3 illustrates the stability of the SIM for the novel NES, for
various values of d. It can be noticed that unstable and stable branches are
separated by folds, as expected from obvious topological considerations. This
analysis identified no other source of instability. The dynamics along the SIM
are obtained by collecting the primary system equation for order ε1 after applying
(17) and harmonic balancing:

∂A

∂τ1
+

ξ√
1 + δ

A

2
+
∂B

∂τ0
− B

2j
− A

2j
= 0 (21)

Then, assuming the dynamics only on a slow time scale (s.t. ∂B
∂τ0

) and plugging
in the second equation of (18):

∂A

∂τ1
+

ξ√
1 + δ

A

2
− ξna√

1 + δ

B

2
− γ

1 + δ

B ·G(B, B̄)

2j
= 0 (22)
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unstable branches, for ξna = 0.15, δ = 0 and γ = 0.3.

After that, substituting A = aejα and B = bejβ, the real part of (22) and the real
and imaginary part the second equation of (18) on a slow time scale becomes:

∂a

∂τ1
+

ξ√
1 + δ

a

2
− ξna√

1 + δ

b

2
sin(β − α) = 0

− a

2
sin(α− β) +

ξna√
1 + δ

b

2
= 0

a

2
cos(α− β) +

γ

1 + δ

b ·G(b)

2
− b

2
= 0

(23)

Then inserting the second equation in the first, and adding the square of the
second and third equation of (23) leads to:

∂a2

∂τ1
= − ξ√

1 + δ
a2 − ξna√

1 + δ
b2

a2 =

(
ξ2

na

1 + δ
+

(
1− κ

1 + δ
− γ

1 + δ
G(b)

)2
)
b2

(24)

The first equation in (24) states that the primary system vibration amplitude
squared, will decrease if there is damping. The second is the SIM derived previ-
ously in (14).

3.5. Dissipation power

To quantify the performance of the NES, the dissipation power is now con-
sidered. This quantity is the power of dissipation by the viscous damper of the
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absorber. In (5), the damping coefficient is εξna√
1+δ

, which has an averaged per

period dissipation power of Pdiss(τ) = εξna√
1+δ

b2 [16, 36]. As the dissipation power

is proportional to the square of the relative NES amplitude of vibration, the SIM
also expresses the performance of an NES. This means that the higher the NES
amplitude b for a given primary system vibration a, the higher the dissipation
power is. Referring to the SIMs in Figure 2, the more to the right a SIM is
for a certain a, the higher its dissipation power is and the faster the associated
vibration absorber will dissipate vibrations. For a certain absorber damping ξna,
a given vibration amplitude a and a fully known primary system δ = 0, the SIMS
(15) and (14) give the absorber vibration amplitudes. It is now shown that the
TMD will always have a higher amplitude b as:

a2 =ξ2
nab

2
TMD =

(
ξ2

na + (1− γG(bNES))2
)
b2NES

⇒=
b2NES

b2TMD

=
ξ2

na

ξ2
na + (1− γG(bNES)2 ≤ 1

(25)

Thus, under the assumption of 1:1 resonance and a certain primary system
(δ = 0), any NES will dissipate energy slower than the TMD provided they have
the same ξna. Considering that the NES is generally more complex to realize
and to analyze than a linear absorber, if the SIM of an NES lies above the
funnel between the SIMs of the TMD and of the Lancaster absorber, it should
be considered unacceptable, as then a more simpler device (mass and viscous
damper) is better than the NES. In the next section, it is investigated under
what conditions an NES can be better for an uncertain primary system where
δ 6= 0, but first it is investigated if the SIM for the novel NES is representative
for the actual vibrations by comparison with numerical simulations.

3.6. Simulations

An undamped primary system having mass m = 1 kg and assumed stiffness
ka = 1 N/m, without uncertainty (δ = 0) is fitted with a vibration absorber with
mass ratio ε = 0.02 and damping ξna = 0.15. The absorbers compared here are a
TMD, a cubic NES with γ = 0.3 and the novel periodically extended NES with
γ = 0.3 and d = 4. Different transient conditions are now investigated.

3.6.1. ẋ(0) = 1 m/s

In a first simulation presented in Figure 4, the primary system is impulsively
excited with ẋ(0) = 1 m/s. The primary system’s and absorber’s vibrations are
shown in Figure 4a and 4b, respectively. The TMD produces the fastest vibra-
tion decay. For the NESs, the vibration decays significantly but an amount of
residual energy remains. The vibrations of the novel and cubic NES overlaps
because the NES’ vibration amplitude stays below d = 4, thus the periodical
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extensions of the novel NES are not activated. The vibration envelopes of the
simulations are given in Figures 4c and 4d, where a(t) =

√
ω2

1x
2(t) + ẋ2(t) and

b(t) =
√
ω2

1z
2(t) + ż2(t). These contain the same information as the vibrations

itself. Finally, the envelopes of the simulations are compared to the SIMs in Fig-
ure 4e. Apart from the initial part of the simulation, where transient dynamical
phenomena take place, all the envelopes follow quite accurately the SIM derived
analytically. The small increase in the vibration amplitude of the primary system
after the initial rapid decrement (at t = 40 s in Figure 4c and at t = 50 s in Figure
4d) is related to a linear beating phenomenon.

3.6.2. ẋ(0) = 3 m/s

The results of the simulations related to the initial condition ẋ(0) = 3 m/s
are shown in Figure 5. The vibrations are depicted in Figures 5a and 5b. The
envelopes of the primary system shown in Figure 5c prove that also for this
larger initial velocity, the TMD is the best absorber. As the primary system
and the TMD are linear, their response are just a scaled version of the previous
simulation. However, now the performance of the cubic NES is much worse than
the novel periodically extended NES. The reason for this is because the novel
NES’ amplitude is higher than the cubic NES, as seen in the envelope of the
NES, Figure 5d. By comparing the SIMs with the envelopes in Figure 5e, it is
seen that the novel NES’s envelope is attracted by those branches of the SIM
having a higher dissipation power. The conventional cubic NES stays on its SIM
which generates a much slower dissipation, having lower b values. Also, it can
be seen that for a ≈ 1.1, the novel NES’s vibration envelope jumps back to the
SIM of the cubic NES. This is visible in the envelopes as the decay slows down
starting from 70s in Figure 5c and the absorber’s vibration amplitude suddenly
decreases in Figure 5d.

3.6.3. ẋ(0) = [5, 7, 10] m/s

For the next three simulations, only the primary system’s envelope and the
comparison of the SIM and the envelopes are illustrated. The time evolution
of the envelopes in Figures 6a to 6c show that while the decay with TMD just
scales in amplitude, the decay with cubic NES becomes slower with increasing
excitation and that the novel NES, although worse than the TMD, significantly
outperform the conventional NES. The envelopes follow the SIMs quite well, as
illustrated in Figures 6d to 6f, which confirms the predictive character of the SIM.
The novel NES jumps from branch to branch as it descends the SIM. The better
performance of the novel NES compared to the conventional NES is clearly related
to the position of the corresponding SIM further to the right. The simulations
performed so far clearly illustrate that the conventional NES has a limited energy
bandwidth, which the novel NES extends significantly.
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3.6.4. SIM and filtered response ẋ(0) = [10, 20] m/s

In the comparison of the SIM (red) and fast dynamics (red-dotted) for the
novel NES in Figures 4e, 5e and 6d-6f, it is hard to see jumps from branch to
branches. This is because while the SIM assumes an 1:1 resonance, the vibrations
of the NES may contain other sub- or superharmonics. Therefore, Figure 7 has
band-pass filtered versions of the NES vibrations in green to investigate the 1:1
part of the response. The filter only keeps frequencies between 0.8ω0 and 0.2ω0.
The resemblance of the SIM and simulation is more clear, where the vibrations on
average follow the SIM. Furthermore, the jumps of the vibrations go from stable
to stable branch, avoiding the unstable branches. This is as predicted from the
stability analysis in Figure 3.

3.6.5. Dissipation time

The performance in the simulations above was only qualitatively assessed.
To quantify the performance, the dissipation time under different loading is now
computed. The 70% dissipation time is defined as the time required for dissipating
70% of the initial total energy Etot(t):

Tdiss,70% = {t ∈ R+ : Etot(t) = 0.3 · Etot(0)} (26)

where the total energy is the sum of the kinetic and potential energy in the
system:

Etot(t) =
mẋ(t)2

2
+
mnaẋna(t)2

2
+
k(1 + δ)x(t)2

2
+ kna

∫ |x−xna|
0

F (z)dz (27)

This Tdiss,70% is now computed for the primary system with attached either the
TMD, NESs considered previously and also the Lancaster damper; furthermore,
various values of d (namely d=3, 4 or 5) are considered for the novel NES. The
results are shown in Figure 8. The TMD’s dissipation time is 24.8 s and does not
alter under increased excitation. The conventional cubic NES’s dissipation time
increases from about 58 s for ẋ(0) = 1 m/s to over 3000 s for ẋ(0) = 20 m/s. The
performance of novel NESs at first follows the curve of the cubic NES, however,
increasing the initial energy, it significantly differs from it. The novel NES with
d = 3 is the first one to jump down from the cubic NES’s performance line,
followed by the novel NES with d = 4 and finally by the novel NES with d = 5.
However, once the novel NESs dissipation time jumps down from cubic NES,
the novel NES with larger d performs better than the novel NES with smaller d
values, i.e. d = 3 performs worst and d = 5 best. This was already predicted by
the SIMs on Figure 2, where SIMs of the novel NESs with a higher d are more
to the right and thus will have a better dissipation time.
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Figure 4: Simulation results for ẋ(0) = 1 m/s, with (a) the primary system’s vibration, (b) the
absorber’s vibration, (c) the vibration envelopes of (a), (d) the vibration envelopes of (b) and
(e) a comparison of SIMs and the envelope of vibrations (c) and (d) where the solid line are
the SIMs and the dashed the simulations. For these simulation, ω0 = 1 rad/s , δ = 0, ε = 0.02,
ξna = 0.15, γ = 0.3 for the two NESs and d = 4 for the novel NES.
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Figure 5: Simulation results for ẋ(0) = 3 m/s, with (a) the primary system’s vibration, (b) the
absorber’s vibration, (c) the vibration envelopes of (a), (d) the vibration envelopes of (b) and
(e) a comparison of SIMs and the envelope of vibrations (c) and (d) where the solid line are the
SIMs and the dashed the simulations. The same primary system and NES parameters as for
Figure 4 are used.
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Figure 6: Primary system’s envelope for ẋ(0) = [5, 7, 10] m/s (a),(b),(c) and compared to SIM
(d)(e)(f). The same primary system and NES parameters as for Figure 4 are used.
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Figure 7: Comparing filtered simulations to the SIM, for ẋ(0) = 10 m/s (a) and ẋ(0) = 20 m/s,
for a 1:1 comparison.
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Figure 8: The 70 % dissipation time of the cubic NES, the novel NES and TMD for δ = 0. To
calculate this, ω0 = 1 rad/s , δ = 0, ε = 0.02, ξna = 0.15, γ = 0.3 for the two NESs.
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4. Uncertain primary system

The dynamical system in (3) has an uncertainty on the primary stiffness,
expressed in δ. This δ is now varied from −0.4 to 0.4. The SIMs will be analyzed
to predict performance, and then the 70% dissipation time will be computed to
verify this prediction.

4.1. SIMs

The SIMs for an uncertainty of δ = −0.2 are plotted in Figure 9a. The SIM
for the cubic NES and all of the SIMs for the novel NES dip below the line of the
TMD. This means, that for certain intervals of a, the TMD is not the best DVA
to dissipate the vibrations. As was seen before, periodically extended NESs with
larger d, perform better. By decreasing δ to −0.4, the SIMs in Figure 9b show
that the TMD’s performance deteriorates even more. The periodically extended
NES with d = 4 and d = 5 stay below the TMD line for a large range of the
plotted interval.

The effect of a positive uncertainty δ = 0.2 on the SIMs is plotted in Figure 9c.
The NESs also dip below the TMD line, but only for short intervals. Increasing
the uncertainty δ to 0.4, Figure 9d, increases these intervals, but the TMD still
seems to be a better DVA for the most part. To support the predictions made
by the SIMs, the 70% dissipation time is now computed from simulations.

4.2. Dissipation time

To verify the performance, the 70% dissipation time is determined and de-
picted in Figure 10. For δ = −0.2 (Figure 10a) the dissipation time for the NES
shift closer to the TMD line compared to δ = 0 (Figure 8). The cubic NES’s
performance quickly deteriorates, however the periodically extended NESs out-
perform the TMD for a certain energy bandwidth. For δ = −0.4, see Figure 10b,
the TMD’s performance is subpar compared to the NESs. This was predicted
by the SIMs in Figure 9b. The periodically extended NES performs better when
d increases. However, the dissipation time for the periodically extended NESs
follows the curve of the cubic NESs for a wider range than for δ = −0.2, before
then jumping below the TMD line.

Finally, for positive δ, Figures 10c for δ = 0.2 and 10d for δ = 0.4 reveal that
for the majority of the energy bandwidth considered the TMD still outperforms
all the NES considered.

These results illustrate how the performance of the TMD rapidly decreases if
its natural frequency is larger than the natural frequency of the primary system
(δ = −0.2 and -0.4). Conversely, the TMD is still relatively efficient if its natural
frequency is smaller than the natural frequency of the primary system (δ = 0.2
and 0.4). These conclusions suggest that, in order to remain efficient under
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Figure 9: SIMS for the TMD, Lancaster damper, cubic NES and the novel periodically extended
NES for uncertain primary system where δ = −0.2 (a), δ = −0.4 (b), δ = −0.2 (c) and δ = −0.4
(d). Other parameters are ξna = 0.15 and γ = 0.3.
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Figure 10: Dissipation time for the TMD, cubic NES and the novel periodically extended NES
for uncertain primary system where δ = −0.2 (a), δ = −0.4 (b), δ = 0.2 (c) and δ = 0.4 (d).
Additionally, ω0 = 1 rad/s , δ = 0, ε = 0.02, ξna = 0.15, γ = 0.3 for the two NESs.
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variations of the natural frequency of the primary system, the natural frequency
of the TMD should be decreased. The analysis performed does not disclose if, in
that case, the cubic or the novel NES are more efficient than the TMD.

In order to provide a fair comparison between the three absorbers, in the next
section, the parameter values of the absorbers are optimized for specific ranges
of energetic levels and uncertainty, then their dissipation times are compared.

4.3. Optimized absorbers for an uncertain primary system

In this section, we perform an optimization of the absorbers’ parameters for
the TMD, the cubic NES and the novel NES considering that δ ∈ (−0.4, 0.4) and
that ẋ(0) ∈ (5, 10) m/s. The optimization is performed adopting the worst-case-
scenario approach, meaning that, for each configuration of the absorber (each
set of ξna, κ, γ and d values), the largest dissipation time Tdiss,70% over the full
range of parameters δ and ẋ(0) is considered. This analysis will enable us to
compare the three absorbers when they are explicitly designed to stand positive
and negative uncertainties of the primary system and a specific range of initial
energy level.

In the case of the TMD and of the cubic NES, only the damping coefficient
ξna and the absorber’s stiffness coefficients – κ or γ, respectively – must be op-
timized (the mass ratio is assumed fixed at 0.05). Therefore, the optimization
is performed by calculating the dissipation time, through direct numerical sim-
ulations, over a grid of values in the κ, ξna and γ, ξna spaces, respectively. 20
equally spaced intervals of ẋ(0) ranging from 5 to 10 m/s, while only the cases
of δ = −0.4 and δ = 0.4 were considered, in order to reduce computational time.
Intermediate values of δ were investigated only for validating the optimal config-
urations obtained. Although the choice of the initial energy values might seem
arbitrary, the TMD is amplitude-invariant because of its linearity, while for the
NES, variations of the vibration amplitude scale with the nonlinear stiffness (see
[11]). Therefore, any energy level is equivalent, as far as the stiffness is tuned
accordingly. On the contrary, the ranges of variation of the initial energy and δ
are indeed arbitrary. The results of the computation are illustrated in Figure 11.

From the figure, the better performance of the TMD over the NES is clearly
visible. The worst dissipation time obtained with the optimally tuned TMD is
25.3 s, while the NES is unable to provide a worst-case dissipation time lower than
43.65 s, which is almost double. Looking at the parameter values required for
minimizing the dissipation time (marked by red dots in Figure 11), we notice that
the TMD can enlarge the frequency range of effectiveness by reducing its natural
frequency (κ = 0.668) and adopting relatively large damping (ξna = 0.394). The
optimal NES has an even higher damping ξna = 0.667, while its dimensionless
cubic stiffness coefficient γ is very small (γ = 0.014). This result shows that a
properly tuned TMD is indeed able to operate on a relatively large frequency
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band. Similar conclusions were drawn for a TMD mitigating forced vibrations of
a primary system with uncertainties [37].

(a) (b)

Figure 11: Dissipation time for the TMD (a) and for the cubic NES (b) for ε = 0.05. The colors
indicate the largest dissipation time for the initial conditions ẋ(0) ∈ (5, 10) m/s and δ = ±0.4.
The slowest dissipation times are marked by the red dots. Simulations where limited to 200 s.

The optimization of the novel NES is more complicated. In fact, there are
three parameters to be optimized (ξna, γ and d) and analyzing the dissipation
times on a dense enough 3-dimensional grid for the three parameters is computa-
tionally too demanding for the available resources. An initial attempt to find the
optimal parameters through the simplex search method [38] revealed itself to be
strongly dependent on the initial guess; therefore, this procedure was discarded,
and a genetic algorithm was applied instead. Considering the d value ranging
between 1 and 8 and repeating the computation several times, two significantly
different local optima were obtained, having the values indicated in the first two
columns of Table 1.

Optimum 1

ξna 0.44
γ 2.033
d 1.88

Tdiss,70% 31.26

Optimum 2

ξna 0.422
γ 0.216
d 4.091

Tdiss,70% 31.39

Table 1: Sets of optimal parameter values for the novel NES.

The parameter values of the two optima are very scattered, apart from the
damping ξna, which is similar to the optimal value obtained for the TMD (≈ 0.4),
but significantly smaller than the damping required for the optimal cubic NES (≈
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(a) (b)

Figure 12: (a) Dissipation time for the periodic NES for ξna = 0.44 (worst-case-scenario ap-
proach). (b) Dissipation time, for various initial conditions, for the periodic NES with parame-
ter values as in Table 1 (Optimum 1) and δ = −0.4; white dashed lines mark curves with equal
initial energy. Simulations where limited to 200 s.

0.7). Dissipation time is around 31 s, which is much smaller than the dissipation
time of the cubic NES (43.65 s). However, according to this analysis, the TMD
outperforms both the NESs considered for the given range of uncertainty and
initial conditions.

In order to better understand the effect of the parameter values on the per-
formance of the novel NES for an uncertain primary system, we compute the
dissipation time on a section of the three-dimensional parameter space ξna, γ, d,
for ξ = 0.44. This corresponds to the first optimum in Table 1. The resulting dia-
gram is illustrated in Figure 12a. Also this computation considers the worst-case
scenario for the same variations of ẋ(0) and δ.

The figure depicts a quite peculiar structure. The points providing the lowest
dissipation times are organized along a curve that resembles a hyperbola. On this
curve, the dissipation time is relatively homogeneous and varies approximately
between 30 and 35 s. A technical consequence of this observation is that the
optimal design of this NES leaves some freedom, exploitable to overcome practical
constraints over the values of γ and d. However, we also notice that this curve
marks a sort of boundary of a parameter space region with very large dissipation
time and poor performance, existing for γ values above this curve.

This sharp variation is clearly related to a significant difference in the dynam-
ics of the two cases (slow and fast dissipation), which is most probably related to
the multiple coexisting SIM stable branches. If more than one stable branch of
the SIM exists for a given value of the primary system oscillation amplitude a,
the slow dynamics of the system may converge to any of the branches, depending
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on the initial conditions of the system. Branches on the left provide slower energy
dissipation than branches on the right.

In order to verify this hypothesis, we computed the dissipation time for a fixed
configuration of the novel NES – corresponding to the first optimum – utilizing a
grid of initial conditions of the primary system, involving not only initial velocity
but also initial displacements. For the computation, δ was fixed at -0.4. The
result is depicted in Figure 12b. The color map in the figure indicates the dissi-
pation time, while dashed white lines mark curves with constant initial energy.
The figure illustrates that dissipation time can abruptly change for precisely the
same absorber tuning and initial energetic level. This is a clear sign that different
distributions of the energy on the primary system can lead the system to different
coexisting branches of the SIM, with very different dissipation properties. This
behavior is hardly predictable since variations in the initial conditions can always
occur unexpectedly. Nevertheless, the variation of dissipation time, even if sud-
den and sharp, approximately follows the isoenergetic curves. This means that,
although uncertainties exist, it is still possible to tune the novel NES for a target
energy range quite safely.
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Figure 13: SIMs of the optimal TMD (ξna = 0.394, κ = 0.668), optimal conventional NES
(ξna = 0.667, γ = 0.0.014) and the first two novel NESs from Table 1. The SIMs in (a) have
δ = 0.4 and in (b) δ = −0.4.

The SIMs of the optimized TMD, conventional NES and novel NESs are
presented in Figure 13 for δ = 0.4 and δ = −0.4. For δ = 0.4, the SIMs for the
conventional and novel NESs dip below the TMD line. However, for δ = −0.4,
this is not the case. This confirms that for the range of δ ∈ [−0.4, 0.4], the optimal
TMD is more robust than the others for worst-case scenario optimization.
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5. Conclusion

This paper explored a nonlinear energy sink (NES) with a novel stiffness char-
acteristic, the periodically extended cubic stiffness. Its performance in mitigating
transient vibrations of an uncertain single-degree-of-freedom primary system was
investigated by deriving a slow invariant manifold (SIM), by assuming a 1:1 reso-
nance between the primary system and the NES. The SIM is a static expression,
that relates the vibration amplitude of the primary system to that of the NES,
and can predict the power dissipation of the NES, while also being computa-
tionally efficient, as no numerical integration is needed. The SIMs of the novel
NES were compared to the SIMs of the conventional cubic NES, of the tuned-
mass-damper and of the Lancaster damper. The SIMs showed that for primary
systems that do not have any uncertainty, the TMD has the largest dissipation
power in 1:1 resonance, when compared to an NES, regardless of its stiffness char-
acteristic. The SIM also revealed that the conventional NES have a very small
energy bandwidth where it performs well; on the contrary, the novel periodically
extended NES significantly increases this energy bandwidth. Furthermore, the
SIMs clearly illustrated that the SIMs of the Lancaster damper and of the TMD
form a funnel. The SIM of the NES is, for low amplitude, tangent to the SIM of
the Lancaster damper, while for a certain energy level it is tangent to the SIM
of the TMD. For higher energy levels, the SIM of the cubic NES lies outside this
funnel, above the Lancaster damper line, making the NES inefficient for that
energy level; while the newly proposed NES possesses a SIM which lies below the
Lancaster line for almost any energy level.

For primary systems with an uncertainty on the stiffness, the SIMs revealed
that performance of a regular TMD deteriorates, while the periodically extended
NES’s performance is more robust and, in some cases, even better than that of
the TMD. By increasing the period of the periodic extension, the performance
increased even further. To confirm the predictive properties of the SIM, numerical
simulations were performed comparing the cubic NES, the periodically extended
NES and the TMD. On thereof obtained time evolutions, the 70% dissipation time
was computed. The simulations showed that the SIM is a good representation of
the vibration amplitude and is a good predictor of the actual performance of the
investigated vibration absorber, therefore they confirmed the results analytically
predicted. By performing an optimization of the TMD, the cubic NES and the
periodically extended NES explicitly designed for mitigating vibrations of primary
systems encompassing large uncertainty range, it was shown that the TMD, if
properly tuned, can dissipate vibrations over a relatively large frequency range,
significantly outperforming the cubic NES. In the future, the performance of the
novel NES for multi degrees-of-freedom primary systems and for other types of
excitations, such as harmonic or random, should be investigated.

This research, focused on a specific shape of the restoring force of the absorber,
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showed that the energy bandwidth of an NES can be significantly increased.
Indeed, the objective of the research was to illustrate that NESs encompassing
unconventional restoring forces can have enhanced performance. Nevertheless,
the chosen periodically extended restoring force is certainly not the optimal one
and infinitely many others can be proposed. In this context, we believe that
future researches in the topic should not consider a specific uncommon restoring
force, but should rather aim at identifying the optimal possible restoring force
shape, by exploiting analytical tools such as the SIM and numerical optimization.
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Appendix A. Realization

A conventional NES was realized in [29] and was based on the mechanism in
Figure A.1a. A mass, constrained in the x-direction, features axial springs on
rollers that, under a static force Fx, are compressed according to a machined or
3D-printed force profile that has a function f(x). The force Fx and the displace-
ment of the absorber x is related by the force profile f(x):

Fx = klf(x)
df(x)

dx
(A.1)

To achieve a cubic nonlinear stiffness, this force profiled should be a parabola.
The experimental realization is shown in Figure A.1b. To achieve any tailor-
made stiffness characteristic, the force profile should equal the square of the
elastic energy of the spring:

f(x) =

√
1

kl

∫ x

0
F (x) + C (A.2)

Where the term
∫ x

0 F (x) is the potential energy of the desired characteristic. This
result was also presented in [30]. The force profile for the periodically extended
cubic stiffness NES is shown in Figure A.1c. However, the sharp kinks in the force
profile might cause issues in the realization and the rollers attached to the axial
springs. A proposal to smooth out the discontinuities in the spring characteristic
is found in Appendix D, which will also smooth out the kinks in the force profile.

Appendix B. First harmonic of periodically-extended NES

The integral (9) is solved here if the stiffness is (2). Under steady state,

B = bejβ, z = Bejτ−B̄e−jτ
2j = b sin(τ + β). Solving the integral depends on the

amplitude of vibration b.

Appendix B.1. b < d

For b < d, only the part where F (z) = z3 has to be considered:

f1 =
ejβ

2π

∫ 2π

0
(b sin(τb))

3e−jτbdτb

= −j 3b3ejβ

8
= −jB

2

3b2

4

(B.1)

where τb = τ + β. Here G(b) = 3b2

4 , which is the same for the conventional NES.

28



mna

kl
f(x)

Fx

y

x

(a)
(b)

mna

(c)

Figure A.1: The concept of the conventional NES realization (a) and realization (b) in [29], and
periodically extended to create the novel NES presented in this paper, (b).
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Appendix B.2. d < b < 2d

For this amplitude, the first periodic extension in both negative and positive
direction have to be included in the integral:

f1 =
ejβ

2π

(∫ asin( d
b

)

0
(b sin(τb))

3e−jτbdτb +

∫ π−asin( d
b

)

asin( d
b

)
(b sin(τb)− d)3e−jτbdτb

+

∫ π+asin( d
b

)

π−asin( d
b

)
(b sin(τb))

3e−jτbdτb +

∫ 2π−asin( d
b

)

π+asin( d
b

)
(b sin(τb) + d)3e−jτbdτb

+

∫ 2π

2π−asin( d
b

)
(b sin(τb))

3e−jτbdτb

)

=
eiβ

2π

(
− 8b2

√
b2 − d2

b2
d− 2d3

√
b2 − d2

b2
− 6d2basin(

d

b
) +

3πb3

4
+ 3d2bπ

)
(B.2)

Appendix B.3. nd < b < (n+ 1)d

For an amplitude nd < b < (n+ 1)d, the NES reaches the periodic extension
up to and including (z−nd)3 for positive displacements and (z+nd)3 for negative.
The integral is split into pieces, f1 =

∑n
i=0 f1i where f1i is the contribution for

when |z| = |b sin(τb + β)| < (i+ 1)d. For i = 0:

f10 =
ejβ

2π

(∫ asin( d
b

)

0
(b sin(τb))

3e−jτbdτb +

∫ π+asin( d
b

)

π−asin( d
b

)
(b sin(τb))

3e−jτbdτb

+

∫ 2π

2π−asin( d
b

)
(b sin(τb))

3e−jτbdτb

)

=− j e
jβ

2π

(
− d3

√
b2 − d2

b2
+

3

2
b3asin(

d

b
)− 3

2
b2
√
b2 − d2

b2
d

)
(B.3)

where τb = τ + β

30



For 0 < i < n

f1i =
ejβ

2π

(∫ asin(
(i+1)d
b

)

asin( id
b

)
(b sin(τb)− id))3e−jτbdτb +

∫ π−asin( id
b

)

π−asin(
(i+1)d
b

)
(b sin(τb)− id))3e−jτbdτb

+

∫ π+asin(
(i+1)d
b

)

π+asin( id
b

)
(b sin(τb) + id))3e−jτbdτb

∫ 2π−asin( id
b

)

2π−asin(
(i+1)d
b

)
(b sin(τb) + id))3e−jτbdτb

)

= −j e
jβ

2π

(
13

2

(
2(i− 1)(i2 + 1)d2

13
+ b2(i− 3

13
)

)
d

√
b2 − (i+ 1)2d2

b2

+
1

2
(−2d3i3 − 13b2di)

√
−d2i2 + b2

b2
− 3

2
b2(4d2i2 + b2)

(
asin

(
id

b

)
− asin

(
(i+ 1)d

b

))
(B.4)

and finally for i = n

f1n =
ejβ

2π

(∫ π−asin(nd
b

)

asin(nd
b

)
(b sin(τb)− nd)3e−jτbdτb +

∫ 2π−asin(nd
b

)

π+asin(nd
b

)
(b sin(τb) + nd)3e−jτbdτb

)

= −j e
iβ

2π

(
1

4
(−4d3n3 − 26b2n)

√
−d2n2 + b2

b2
+

3

4
b(4d2n2 + b2)

(
π − 2asin

(
nd

b

)))
(B.5)

Appendix C. Stability

The derivatives to calculate are:

∂(B ·G(B, B̄))

∂B
= G(B, B̄) +B

∂(G(B, B̄))

∂B
∂(B ·G(B, B̄))

∂B̄
= B

∂(G(B, B̄))

∂B̄

(C.1)

Appendix C.1. b < d

From (B.1) where b = |B|:

G(B, B̄) =
3

4
|B|2 =

3

4
BB̄

∂(G(B, B̄))

∂B
=

3

4
B̄

∂(G(B, B̄))

∂B̄
=

3

4
B

(C.2)
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Appendix C.2. nd < b < (n+ 1)d

When the NES vibrates in the periodic extensions, the integral is split up in
parts as in (B.3) to (B.5). From these integrals G(B, B̄) = B

∑n
i=0Gi(B, B̄),

where the derivatives are then:

∂(G(B, B̄))

∂B
=
∂(
∑n

i=0Gi(B, B̄))

∂B
∂(G(B, B̄))

∂B̄
=
∂(
∑n

i=0Gi(B, B̄))

∂B̄

(C.3)

where G0(B, B̄)

G0(B, B̄) = − 1

π

(
− d3

|B|2
√
|B|2 − d2 +

3

2
|B|2asin

(
d

|B|

)
− 3

2

√
|B|2 − d2d

)
∂(G0(B, B̄))

∂B
= − 1

π

(
− 3dB̄

4
√
|B|2 − d2

+
d3
√
|B|2 − d2

B̄ B2
− d3

2B
√
|B|2 − d2

+
3B̄asin

(
d
|B|

)
2

− 3d B̄2B

4|B|3
√
− d2

|B|2 + 1

)

∂(G0(B, B̄))

∂B̄
=
∂(G0(B, B̄))

∂B
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and Gi(B, B̄) for 1 < i < n:

Gi(B, B̄) = − 1

π

(13d

(
2(i−1)(i2+1)d2

13|B|2 + i− 3
13

)√
|B|2 − (i+ 1)2 d2

2

+

(
−2i3d3

|B|2 − 13id
)√
−i2d2 + |B|2

2
−

3
(
4i2d2 + |B|2

) (
asin

(
id
|B|

)
− asin

(
(i+1)d
|B|

))
2

)

∂(Gi(B, B̄))

∂B
= −

d3 (i− 1)
(
i2 + 1

)√
|B|2 − (i+ 1)2 d2

B̄ B2
+

13d

(
2(i−1)(i2+1)d2

13|B|2 + i− 3
13

)
B̄

4
√
|B|2 − (i+ 1)2 d2

+
i3d3

√
−i2d2 + |B|2√
BB2

+

(
−2i3d3

|B|2 − 13id
)
B̄

4
√
−i2d2 + |B|2

−
3B̄
(

asin
(
id
|B|

)
− asin

(
(i+1)d
|B|

))
2

−

3
(
4i2d2 + |B|2

)− idB̄

2|B|3
√
− d2i2
|B|2

+1
+ (i+1)dB̄

2|B|2
√
− (i+1)2d2

|B|2
+1


2

∂(Gi(B, B̄))

∂B̄
=
∂(Gi(B, B̄))

∂B

and finally Gn(B, B̄):

Gn(B, B̄) = − 1

π

((−4d3n3

|B|2 − 26dn
)√
−d2n2 + |B|2

4

+
3
(
4d2n2 + |B|2

) (
π − 2asin

(
nd
|B|

))
4

)

∂(Gn(B, B̄))

∂B
= − 1

π

(
d3n3

√
−d2n2 + |B|2
B̄ B2

+

(
−4d3n3

|B|2 − 26nd
)
B̄

8
√
−d2n2 + |B|2

+
3B̄
(
π − 2asin

(
nd
|B|

))
4

+
3
(
4d2n2 + |B|2

)
ndB̄

4|B|3
√
−n2d2

|B|2 + 1

)

∂(Gn(B, B̄))

∂B̄
=
∂(Gn(B, B̄))

∂B
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Appendix D. Smoothed NES restoring force function

Depending on the mechanism utilized for the practical realization of a peri-
odically extended NES, the discontinuities of the restoring force function might
cause technological challenges. In this section, we verify that eliminating those
discontinuities does not compromise the performance of the absorber. The restor-
ing force function F (z) has discontinuities for z = ±id, for i ∈ N+. In order to
make F (z) differentiable, for

id− s/2 < z < id+ s/2, (D.1)

we substitute F (z) with the third order polynomial function

F̃ (z̃) = a0 + a1z̃ + a2z̃
2 + a3z̃

3, (D.2)

where 0 < s < d/2 is an arbitrarily small positive real number. The coefficients
a0, a1, a2 and a3 are chosen such that F̃ (z̃) has the same value and the same first
derivative of F (z) for z = id− s/2 and z = id+ s/2. For z > 0, the new variable
z̃ is defined as

z̃ = z −
⌊
x+ s/2

d

⌋
+ s/2, (D.3)

besides,

a0 = (d− s/2)3

a1 = 3 (d− s/2)2

a2 = −3
(
4d3 + 2d2s− 5ds2 + 2s3

)
4s2

a3 =
2d3

s3
− 3d

2s
+ 1.

(D.4)

Eventually, Eq. (2) is substituted by

F (z) =

{
F1(z) z ≥ 0

F2(z) z < 0,
(D.5)

where

F1(z) =

{(
z −

⌊
z
d

⌋
d
)3 s

2 < z −
⌊
z
d

⌋
d < d− s

2 or z < d
2

a0 + a1z̃ + a2z̃
2 + a3z̃

3 z > d
2 and

(
z −

⌊
z
d

⌋
d < s

2 or z −
⌊
z
d

⌋
d > d− s

2

)
(D.6)

and F2(z) = −F1(−z). Figure D.2a provides a comparison between the original
discontinuous restoring force and the continuous one. In the figure d = 3, while
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Figure D.2: a) Restoring force function compared to its continuous counterpart for s = d/50
and s = d/10. (b) Comparison of displacements of the primary system in time, for the same pa-
rameter values, except the smoothing coefficient s. (c) Relative displacement of the periodically
extended NES.

s = d/50 and s = d/10. s = 0 corresponds to the discontinuous case. We
performed time integration of the mechanical system, using the same parameter
values of Fig. 5, for different values of s (s = d/50 and s = d/10). The resulting
time series are provided in Figs. D.2b and D.2c. We notice that, although the
NES relative displacement is quite different in the three cases, the envelope of
the vibrations in the primary system is practically unchanged, which suggests
that eliminating the discontinuity of the NES restoring force function does not
compromises its performance.

35


	Introduction
	Model description and novel stiffness
	Slow invariant manifold: derivation, stability and numerical simulation
	System
	Harmonic balancing
	Slow invariant manifold
	SIM dynamics and stability
	Dissipation power
	Simulations
	(0)=1 m/s
	(0)=3 m/s
	(0)=[5,7,10] m/s
	SIM and filtered response (0)=[10,20] m/s
	Dissipation time


	Uncertain primary system
	SIMs
	Dissipation time
	Optimized absorbers for an uncertain primary system

	Conclusion
	Realization
	First harmonic of periodically-extended NES
	b < d
	 d < b < 2d 
	 nd < b < (n+1)d

	Stability
	b < d
	 nd < b < (n+1)d

	Smoothed NES restoring force function

