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Tailored nonlinear stiffness and geometric damping: applied
to a bistable vibration absorber

Kevin Dekemelea

aGhent University, Department of Electromechanical, Systems and Metal Engineering, Tech
Lane Ghent Science Park - Campus A 125, 9052, Ghent, Belgium

Abstract

A novel device is proposed to obtain arbitrary restoring force characteristics and
nonlinear geometric damping. It consists of linear springs and dampers that are
compressed along a track. The obtained nonlinear damping and stiffness law
depend on the track’s shape. The device is then applied to obtain a nonlinear
energy sink (NES) to damp the vibrations of a host system. Both the case of
transient vibrations, induced by shock loads, and sustained vibrations, induced
by harmonic loads, are studied. For arbitrary stiffness and damping, slow flow
dynamics and slow invariant manifolds (SIMs) are derived by applying harmonic
balancing and multiple timescales techniques. Under transient vibrations, two
performance measures are derived from the SIM, the relative residual energy and
the pumping time, and are found for generic nonlinear spring force and nonlin-
ear geometric damping. For sustained vibrations, a load-dependent frequency
response (FR) is derived from the SIMs. This FR predicts the occurrence of the
efficient strongly modulated responses but also the occurrence of the unfavor-
able detached responses called isolas, where the NES fails to mitigate and even
amplifies vibrations.

This research investigates the performance of a conventional cubic NES and a
bistable NES (BNES) with nonlinear damping obtained from the proposed device.
Especially the BNES with nonlinear damping shows attractive properties, with a
high degree of robustness over a wide energy range and a low vibration threshold
under transient loading. Under harmonic loads, the nonlinear damping helps
reduce the effect of isolas. A novel tuning methodology is proposed to avoid
isolas for a range of load magnitudes. The new device opens up a whole range of
possibilities regarding energy dissipation through nonlinear damping.

Keywords: Nonlinear damping, Passive Vibration Control, Dynamic Vibration
Absorber, Nonlinear Energy Sink, Bistable stiffness
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1. Introduction

In the field of passive vibration control, tuned-mass-dampers (TMD) are by
far the most investigated and implemented devices. It consists of a linear mass-
spring oscillator with linear viscous damping to dissipate energy [1]. An efficient
TMD design implies matching the TMD’s natural frequency to the harmful vi-
bration frequency of the host system it is meant to protect. However, the TMD’s
effective frequency range is relatively small, and a shift or uncertainty in vibration
frequency or the presence of multiple vibration modes limits the TMD’s effective-
ness. Multiple TMDs can be added to address the issues mentioned above [2, 3].

In the last 20 years, a vibration control device with a strongly nonlinear
restoring force called the nonlinear energy sink (NES) has been proposed [4, 5, 6]
The strongly nonlinear restoring force enables an amplitude-dependant natural
frequency, unlike linear TMDs, which have a fixed natural frequency. As such,
the NES can self-tune itself to the vibration frequency of its host system. As an
effect, it has a larger frequency bandwidth than the TMD, which is only effective
around its fixed natural frequency.

The NES has been investigated for different types of loading as transient [7, 8],
harmonic [9, 10, 11] and stochastic loading [12, 13]. The conventional NES has
a polynomial hardening restoring force, typically purely cubic. However, other
restoring forces have been proposed as bistable [14, 15, 16, 17, 18], softening [19],
hardening-softening [13, 20], periodic [21] or impact [22, 23, 24]. The above works
study the effect of shock loads or harmonic loads on the host system, while the
performance of the NES under self-sustained oscillations has also been studied
[25, 26, 27]. In many works, it is shown that the conventional NES has a limited
efficient energy range. A too-low or too-high forcing or input energy at the main
structure side renders the NES inefficient. On the low energy side, the NES does
not dissipate significantly unless a certain level of vibration energy, or energy
threshold, is present in the host system. Just above the energy threshold, the
NES performs efficiently. However, as the vibration energy increases to higher
levels, the performance also decreases. Furthermore, under transient loading, the
conventional NES fails to dissipate all the energy, leaving a residual amount of
vibration energy in the host system. To lower the energy threshold and reduce
residual energy, an NES with bistable stiffness can be used [18]. However, the
decreased efficiency at higher energy levels remained, and under low energy con-
ditions and/or high linear damping, the NES vibrated chaotically, with reduced
vibration mitigation performance. A device has been proposed that increases
the viscous damping of the conventional cubic NES with the vibration amplitude
[28, 29, 30, 31]. The proposed nonlinear damping coefficient was approximately
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proportional to the square of the displacement, cgd(z) = z2, where the damping
force is z2ż. This type of damping, where the damping depends on the position,
is called geometric damping. This damping increases the NES performance for
high energy levels. Furthermore, under harmonic excitations, the nonlinear geo-
metric damping can even reduce the effects of the undesired detached resonance
curves, called isolas [32, 33]. Other nonlinear damping forces have been proposed
that are nonlinear in the speed [33, 34, 35], e.g., cgd(z) = ż2 or increasing and
then decreasing with the displacement [36]. The current research will tackle all
downsides of the conventional NES by combining a bistable restoring force and
a nonlinear geometric damping. Bistable restoring forces can be obtained in sev-
eral ways, by using pre-stressed springs or beams perpendicular to the stroke of
the NES [37, 38, 15], an array of magnets [16, 39, 40] or by constraining linear
springs to a nonlinear machined track [41, 42, 43]. The latter method will be used
here; in particular, an enhancement of the device in [41] is proposed to include
the option to tailor the nonlinear geometric damping by fitting a linear damper
that follows the nonlinear machined track. It will be shown that the nonlinear
geometric damping obtained using the same track as for the desired restoring
force is proportional to the square of the restoring force divided by the restoring
force’s potential energy. Although this paper will focus on a bistable NES, the
proposed device can make both arbitrary nonlinear stiffness and nonlinear geo-
metric damping. This ability opens a whole new field of study as now nonlinear
geometric damping is not only restricted to the cgd(z) = z2 type.

A framework is developed to design, assess, and optimize the performance
of NES with generic geometric damping and restoring force, for both transient
vibrations under shock load and sustained vibrations under harmonic loads. Here
it will be applied to the conventional cubic NES and the bistable NES, with as-
sociated nonlinear geometric damping obtained from the proposed device. In the
next section, the proposed device is presented and it is shown how to tailor-make
nonlinear stiffness and nonlinear damping. Section 3 presents the equations of
motion of the device attached to a linear oscillator under transient load. For arbi-
trary stiffness and damping, slow flow dynamics and a slow invariant manifold are
derived by applying harmonic balance and multiple timescales techniques. Then,
in section 4, the slow flow performance measures are presented, which allows to
efficiently compute the dissipation rate and residual energy for arbitrary damping
and stiffness. From then on, the particular case of hardening and bistable stiffness
is investigated with their corresponding nonlinear geometric damping. Section 5
presents numerical performance and an optimization method based on the full
equations of motions. Sections 6 and 7 investigate the behavior of the NES un-
der harmonic loads through harmonic balancing, and a novel tuning scheme is
proposed to avoid isolas. Finally, the conclusions are presented.
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Figure 1: The proposed device to obtain nonlinear stiffness and nonlinear geometric. The mass
moves horizontally, and the linear springs and dampers klin and clin are compressed according
to track f(z), (a) is an overview and (b) a closer look at the internal forces.

2. Proposed device

Figure 1a shows a scheme of the proposed device. It consists of a mass mna

moving in the z-direction. Linear springs and dampers clin and klin are attached
to the mass and their other ends are connected with a follower. The follower
can move along a track f(z). As the mass moves horizontally due to an applied
time-varying force Fz(t), the spring and damper are compressed according to the
track f(z). This causes the reaction forces Fy and R as depicted in Figure 1b.
The reaction forces and applied force are related as follows:

Fz = 2R sin(θ) Fy = R cos(θ) ⇒ Fz = 2Fy tan(θ) (1)

with θ(x) is the slope angle of f(z), related to the track by tan θ = df(z)
dz . The

follower end is compressed by y = f(z) and has velocity ẏ = ḟ(z) = df(z)
dz ż. The

reaction force Fy is thus:

Fy = klinf(z) + clin
df(z)

dz
ż (2)

4



where ˙ stand for time derivative d
dt . Finally, combining the equations (1) and (2)

yields the relation between the applied force and the track:

Fz = 2klinf(z)
df(z)

dz︸ ︷︷ ︸
Fs

+2clin

(
df(z)

dz

)2

ż︸ ︷︷ ︸
Fgd

(3)

where Fs is the obtained spring force and Fgd is the obtained geometric damp-
ing. It is called geometric damping, as the nonlinearity depends only on the
displacement.

In [41, 42], the track f(z) was designed to tailor a predetermined spring
characteristic Fs(z). The relation between the desired spring force and the track
is:

df(z)

dz
=

Fs

2f(z)klin
⇒ f(z) =

√
1

klin

∫ z

0
Fs(z)dz + f(0)2 (4)

where f(0) is the pre-stress of the spring klin at z = 0. As such, df(z)
dz is:

df(z)

dz
=

1

klin

Fs(z)

2
√

1
klin

∫ z
0 Fs(z)dz + f(0)2

(5)

The associated geometric damping force for this track is then:

Fgd =
clin
2klin

F 2
s (z)∫ z

0 Fs(z)dz + klinf(0)2︸ ︷︷ ︸
cgd(z)

ż (6)

where cgd is the geometric damping coefficient, that depends on the displacement
in a nonlinear way.

In this paper, the stiffnesses under investigation are the conventional harden-
ing cubic and the bistable stiffness. The required tracks are, respectively:

Fs = k3z
3 ⇒ f(z) =

1

2

√
k3
klin

z2

Fs = k3z
3 − k1z ⇒ f(z) =

√
1

klin

(
k3
4
z4 − k1

2
z2
)
+ f(0)2

(7)

For the cubic stiffness, it is opted for no pre-stress, f(0) = 0. For the bistable
stiffness, the pre-stress should make the terms under the square root positive for
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Figure 2: The NES and BNES stiffness (a) and required track (b) for Fs = 0.004z3 for the NES
and Fs = 0.004z3 − 0.01z for the BNES, and klin = 1 and pre-stress of f(0) = 0 for the NES
and f(0) =

√
0.05 for the BNES.

all z, f(0)2 > 1
klin

(
k3
4 z

4 − k1
2 z

2
)
.

The associated nonlinear geometric damping forces for these two types of stiff-
nesses are:

Fs = k3z
3 ⇒ Fgd =

clin
2klin

4k3z
2︸ ︷︷ ︸

cgd(z)

ż

Fs = k3z
3 − k1z ⇒ Fgd =

clin
2klin

(
k3z

3 − k1z
)2

k3
4 z

4 − k1
2 z

2 + klinf(0)2︸ ︷︷ ︸
cgd(z)

ż
(8)

The track for an NES where Fs = 0.004z3 and a BNES where Fs = 0.004z3−
0.01z is shown on Figure 2. The stiffness forces in Figure 2a have their corre-
sponding track in Figure 2b. A stiffness klin = 1 and pre-stress of f(0) =

√
0.05

(only for the BNES) was used to compute the tracks. Figure 3 plots the asso-
ciated nonlinear damping coefficient where clin = 1. For small z, Figure 3a, the

damping of the BNES is much smaller and even is zero for z = ±
√

k1
k3 , the exact

point where the stiffness force is zero as well, Figure 2a. These two points are
also the stable points. For increasing z, the damping coefficient for the BNES
approaches the NES’s, Figure 3b.

Remark. The nonlinear geometric damping can also be tailored to a desired
damping force Fgd = cgd(z)ż. Manipulating the damping force (3) yields:

df(z)

dz
=

√
cgd(z)

2clin
⇒ f(z) =

√
1

2clin

∫ z

0

√
cgd(z)dz + f(0) (9)
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Figure 3: The geometric damping, (7), for the NES and BNES associated with the tracks
found in Figure 2b, where for the NES (black line) k3 = 0.004 for the BNES (red) k3 = 0.004,
k1 = 0.01 and f(0) =

√
0.05. For both NESs, klin = 1 and clin = 1. (a) and (b) represent the

same functions both for other ranges.

m mna

klin clin

c

k

x

xna

Figure 4: A 1DOF host system fitted with proposed NES.

The associated nonlinear stiffness is then:

Fs = 2klin

√
cgd(z)

2clin

(√
1

2clin

∫ z

0

√
cgd(z)dz + f(0)

)
(10)

Additionally, in an extension of the proposed device, the linear spring and
damping of the device can be connected to separate tracks, allowing both tailoring
damping and stiffness independently.

3. Dynamics of nonlinear energy sink attached to linear oscillator

3.1. Equations of motion

The proposed device is attached to a linear oscillator (LO) host system. A
scheme of this configuration is shown in Figure 4. The nonlinear track in red is
fixed to the host system’s mass. The equations of motion (EOM) are:
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mẍ+ cẋ+ kx+ cna(ẋ− ẋna) + cgd(x− xna)(ẋ− ẋna) + Fs(x− xna) = 0

mnaẍna − cna(ẋ− ẋna)− cgd(x− xna)(ẋ− ẋna)− Fs(x− xna) = 0
(11)

where m, k, c are the host system’s mass, spring and damping, mna and cna are
the NES mass and linear damping. The nonlinear spring force Fs and nonlinear
geometric damping cgd are determined by the track of the device. After some

rearrangements, dividing by m, introducing dimensionless time τ =
√

k
m t =

ωnt and relative absorber coordinate z = xna − x, equation (11) is written in
dimensionless coefficients:

x′′ + εξx′ + x+ ε
(
z′′ + x′′

)
= 0

ε
(
z′′ + x′′

)
+ εξnaz

′ + εξgd(z)z
′ + εfs(z) = 0

(12)

where ′ is the time derivative w.r.t. τ and:

ε =
mna

m
ξ =

c

mnaωn
ξna =

cna
mnaωn

ξgd(z) =
cgd(z)

mnaωn
fs(z) =

Fs(z)

mnaω2
n

(13)

with ε the mass ratio, assumed small (ε ≪ 1), and ξ and ξna dimensionless
damping constants. Although the cubic and bistable stiffness will be studied in
later sections, the general forms of stiffness fs(·) and nonlinear damping cgd(·)
will be kept in this section to keep the analysis generic. For the spring forces of
the conventional NES and bistable NES, fs is:

Fs = k3z
3 ⇒ fs = γz3, Fs = k3z

3 − k1z ⇒ fs = γz3 − κz (14)

where

γ =
k3

mnaω2
n

κ =
k1

mnaω2
n

(15)

where κ is the dimensionless negative stiffness coefficient and γ the nonlinear
stiffness coefficient. The latter has dimension [1/m2]. Later on, γ is used to
nondimensionalize the displacement, but for now, the analysis is kept for a generic
nonlinear spring force. The nonlinear geometric damping of (8) be expressed in
κ and γ:

Fs(z) = k3z
3 ⇒ ξgd(z) = 2ωn

clin
klin

k3
mnaω2

n

z2 = ξ̃gdγz
2

Fs(z) = k3z
3 − k1z ⇒ ξgd(z) =

ξ̃gd
4

γz2
(
γz2 − κ

)2
γ2

4 z
4 − κγ

2 z2 + f̃(0)2

(16)
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where ξ̃gd = 2ωn
clin
klin

and f̃(0)2 = klinf(0)
2γ2

k3
.

3.2. Slow flow dynamics of 1:1 resonance

To better understand the NES performance, a slow flow manifold will now be
derived from the EOM. For this, a 1:1 resonance harmonic balancing (HB) and
a two timescales scheme is applied. In this context, 1:1 resonance implies that
both the NES and LO vibrate with the same, single, frequency. The first step in
the approach is complexifing x and z to complex variables of Manevitch A,B ∈ C
[44]:

2A(τ)eiτ = x− ix′ 2B(τ)eiτ = z − iz′ (17)

where the original variables are then substituted by:

x = A(τ)eiτ +A∗(τ)e9iτ z = B(τ)eiτ +B∗(τ)e9iτ

x′ = iA(τ)eiτ − iA∗(τ)e9iτ z′ = iB(τ)eiτ − iB∗(τ)e9iτ
(18)

where ∗ indicates the complex conjugate. Deriving 2A(τ)eiτ = x − ix′ and
2B(τ)eiτ = z − iz′ yields after some manipulations:

x′′ + x = i2A′eiτ z′′ + z = i2B′eiτ (19)

Then, after substituting equations (18) and (19) in the EOM (12), only the terms
that are multiplied by e9iτ are kept. This is a consequence of the 1:1 resonance
assumption. Then,dividing by e9iτ yields: :

2A′ + εξA+ ε(2B′ + iB + 2A′
h + iA) = 0

2B′ + iB + 2A′ + iA+ ξnaB − iBG(B,B∗) +BH(B,B∗) = 0
(20)

The termsG(B,B∗) andH(B,B∗) are obtained from a modified Galerkin method,
that comes down to projecting the nonlinear forces on the first harmonic of a
truncated Fourier series [45, 46]

BG(B,B∗) =
1

2π

∫ 2π

0
fs

(
Beiτ +B∗e9iτ

)
e9iτdτ

BH(B,B∗) =
1

2π

∫ 2π

0
ξgd

(
Beiτ +B∗e9iτ

) (
Beiτ −B∗e9iτ

)
e9iτdτ

(21)

In Appendix A, the procedure to compute these integrals is explained. In [47], it
was shown that H and G only depend on the modulus of B, G(|B|) and H(|B|).
Then, the dynamics in (20) are regarded as acting in two timescales, a fast time

9



τ0 and a slow time τ1:

A(τ) = Ah(τ0, τ1), B(τ) = B(τ0, τ1), τ0 = τ, τ1 = ετ ,
d

dτ
=

∂

∂τ0
+ ε

∂

∂τ1
(22)

By applying this procedure to (20) and collecting terms according to their order
in ε, the following is obtained:

∂A

∂τ0
= 0

2
∂A

∂τ1
+ ξA+ 2

∂B

∂τ0
+ iB +

�
�
�

2
∂A

∂τ0
+ iA = 0

2
∂B

∂τ0
+ iB +

�
�
�

2
∂A

∂τ0
+ iA+ ξnaB − iBG(|B|) +BH(|B|) = 0

(23)

The complex A and B written in polar form are A = aeiα/2 and B = beiβ/2.
The equations (23) in polar form are split into their real and imaginary parts,
resulting in the following set of equations:

2
∂a

∂τ1
= −ξa+ b sin(β − α), 2a

∂α

∂τ1
= −b cos(β − α)− a

ξnab+ bH(b) = −a sin(β − α), b− bG (b) = −a cos(β − α)

(24)

Subsequently, a new equation is obtained by inserting the third into the first
equations of (24), and a another equation by squaring and adding the third and
fourth equations:

∂a2

∂τ1
= −ξa2 − ξnab

2 − b2H(b)

a2 = b2
(
(ξna +H(b))2 + (1−G(b))2

) (25)

The first equation describes the dynamics of the slow flow and the second is
the slow invariant manifold (SIM), i.e., a static relation between a en b where
dynamics are confined to.

The stability computation of the SIM is presented in Appendix B. The SIM,
the slow flow dynamics and its stability that were just derived, hold for any
restoring force Fs and geometric damping cgd. Here, G(b) and H(b) for the
restoring force in (14) are computed in Appendix A. For the studied restoring
forces and geometric damping, the displacements can also be dimensionless, where

10



(a)

 

(b)

Figure 5: (a) Collection of SIMs, for an NES with linear damping ξna = 0.2 (black), an NES
with nonlinear geometric damping ξ̃gd = 0.2 (red) and a BNES with ξ̃gd = 0.2, κ = 0.1 and
f̃(0) = 1. (b) Visualization of the slow dynamics (red) on the SIM (black) for an NES where
ξna = 0.2 and κ = ξ̃gd = 0. In both Figures, the dashed lines are unstable solutions.

Za = γa2 and Zb = γb2:

∂Za

∂τ1
= −ξZa − ξnaZb − ξ̃gdZbH̃(Zb)

Za = Zb

((
ξna + ξ̃gdH̃(Zb)

)2
+ (1−G(Zb))

2

) (26)

where

NES ⇒ H̃(b) =
Zb

4

BNES ⇒ H̃(b) =
Zb

8π

∫ 2π

0

(
Zb cos

2(τβ)− κ
)2

Z2
b
4 cos4(τβ)− κZb

2 cos2(τβ) + f̃(0)2
sin2(2τβ)dτβ

(27)

The SIMs for the conventional NES with linear damping (ξna = 0.2, ξ̃gd = 0), the
conventional NES with geometric damping (ξna = 0, ξ̃gd = 0.2) and BNES with
geometric damping (ξna = 0, ξ̃gd = 0.2, κ = 0.1 and f̃(0)2 = 1 are visualized in
Figure 5a. All SIMs have the same S-shape, with a stable left branch, an unstable
middle branch and a stable right branch. When the slow flow is initially on the
right branch, Zb is large, and as such, so is ∂Za

∂τ1
(26). Then, targeted energy

transfer (TET) happens, where most energy is transferred to the NES and is
dissipated by the NES.

In the next section, the equations in (26) are used to derive slow flow perfor-
mance measures.
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4. Slow flow performance measures

Under the efficient TET regime, the dynamics in the slow flow initiate in
{Zb(0), Za(0)} on the rightmost branch on the SIM. Figure 5b visualizes TET.
The first equation in (26) dictates that Za should decrease (negative derivative).
When the dynamics are on the right branch, Za can decrease up until the lo-
cal minimum {Z+

b , Z−
a }. At this point, the slow flow jumps to the left branch,

where low Zb indicates bad NES performance as then the ∂Za
∂τ1

is small. For the
conventional NES, it was shown that attraction to the right branch was ensured
when the initial Za(0) in the LO is above an energy threshold that corresponded
with the maximum of the SIM, Za(0) > Z+

a [7], while for the BNES this was
not required, and a lower threshold was found [18], slightly above Z−

a From a
performance point of view, the descent of the SIM should happen quickly and
the amount of energy dissipated should be high. Two performance measures can
be computed to express this, the relative residual energy and the pumping time.

4.1. Relative residual energy

Once the slow flow has jumped to the left branch, an amount of residual
energy, mainly in the host system, dissipates slowly. Relative to the initial energy
in the host system, the residual energy in the host system is defined as:

Eres =
Z−
a

Za(0)
(28)

where Za(0) = γa(0)2 = γ
√

x(0)2 + x′(0)2.

4.2. Pumping time

The time to descend the SIM from an initial point to the local minimum can
be computed by combining the slow flow dynamics and SIM in equation (25) and
integrating after separation of variables τ1 and Zb [7, 18, 41, 37, 10]. The first
step is to compute ∂Za/∂Zb by deriving the SIM:

∂Za

∂Zb
(Zb) = 2ξ̃gdZb

∂H̃(Zb)

∂Zb

(
ξa + ξ̃gdH̃(Zb)

)
+ 2Zbγ

∂G(Zb)

∂Zb
(G(Zb)− 1)

+

((
ξna + ξ̃gdH̃(Zb)

)2
+ (1−G(Zb))

2

) (29)

Equating this expression to zero can also be used to compute the extrema {Z−
b , Z+

a }
and {Z+

b , Z−
a } of the SIM. Then, ∂Zb/∂τ1 is obtained from:

∂Zb

∂τ1
=

∂Za

∂τ1

∂Zb

∂Za
=

−ξ2Za − ξnaZb − ξ̃gdZbH̃(Zb)
∂Za
∂Zb

(30)

12



Then, separation of variables and integration yields:∫ Z+
b

Zb(0)

∂Za
∂Zb

(Zb)

−ξZa − ξnaZb − ξ̃gdZbH̃(Zb)
∂Zb = τ1,pump = εTpump (31)

where τ1,pump is the pumping time in slow time, and Tpump in fast time. It is opted
to express the pumping time in the fast time in the rest of the paper. The solution
of this integral for the conventional NES was presented in [7]. For the NES with
geometric damping, H̃(Zb) = Zb

4 , the integral can be solved analytically using
mathCAD software as Wolfram Mathematica. For example, for ξ = ξna = 0, the
pumping time is:

εTpump =

4

(
3 ln (|Zb|)− (3ξ2gd+27)Zb

16 + 1
Zb

)
ξgd


Z+
b

Zb(0)

(32)

For the BNES with nonlinear damping, this integral can not be solved analyti-
cally but can be evaluated by either numerical integration or by a Taylor series
approximation of the damping.

4.3. Example

These measures are now computed for a conventional NES (= purely cubic
stiffness) where ξna = 0.13, a conventional NES with geometric damping where
ξ̃gd = 0.4, a BNES where ξna = 0.11 and κ = 0.5, and a BNES with geometric
damping where ξ̃gd = 1.14, κ = 0.5 and f̃2(0) = 0.5. For all configurations, ξ = 0.
The damping coefficients of the four NESs where chosen such that Eres = 0.1 for
Za(0) = 0.202, implying the same Z−

a . For convenience, these NESs will be re-
ferred to as NES #1, NES #2, NES #3, NES #4, respectively.

The SIMs for these NESs are shown in Figure 6a. For NES #1 and #2, the
conventional NES with linear and nonlinear damping, the energy threshold is the
local maximum, where Z+

a = 0.202. This value is computed by finding the max-
imum of the SIM in (26). The initial Za(0) should be larger than the threshold
for TET to occur for NES #1 and #2 [7, 10]. The BNES, NES #3 and #4, do
not have the threshold at Z+

a , but at slightly above Z−
a [18, 38, 37]. The residual

energy and pumping time in the interval Za(0) = [0.202, 5] is shown in Figures
6b and 6c, respectively. As the relative residual energy is almost the same for all
three NESs, the pumping time is the principal measure under investigation. A
mass ratio ε = 0.02 is used to compute the pumping time. For Za(0) = 0.202,
the minimum initial energy to ensure TET for NES #1 and #2, the pumping

13



(a) (b) (c)

Figure 6: The SIMs (a), residual energy (b) and pumping time (c) for the four NESs under
investigation. Where black is NES #1, red NES #2, yellow NES #3 and blue NES #4.

are 45.9 s (NES #1), 38 s (NES #2), 38.8 s (NES #3) and 27 s (NES #4), for
Za(0) = 1, 195 s, 137 s, 175 s and 95 s and for Za(0) = 5, 771 s, 426 s, 740 s, and
269 s. Over the whole considered energy range, the pumping increases by almost
17 times for NES #1, 11% times for NES #2 and 19 times for NES #3 and 10
times for NES #4. The NES #4, the BNES with nonlinear damping, is not only
faster (= lower pumping time) over the whole range, but its performance also
does not decrease at the same rate as the other NESs. Next, to evaluate the via-
bility of the performance measures of the slow flow, they will be compared to full
numerical simulations through the Runga-Kutta scheme of ODE 45 in MATLAB.

4.4. Validity of slow flow performance measures

The performance measures discussed in the previous section are obtained
by manipulating the slow flow dynamical equations and SIM. The complete
EOM (12) for NES #1-#4 are now simulated for a shock load equivalent to
Za(0) = [0.202, 1, 5] and NES performance is compared to the slow flow perfor-
mance measures. The EOM (12) are further manipulated by replacing fs with
(14) and by introducing the dimensionless displacements x̄ =

√
γx and z̄ =

√
γz:

x̄′′ + εξx̄′ + x̄+ ε
(
z̄′′ + x̄′′

)
= 0

ε
(
z̄′′ + x̄′′

)
+ εξnaz̄

′ + εξgd(z̄)z̄
′ + z̄3 − κz̄ = 0

(33)

The initial conditions on (33) are computed as Za(0) = (x̄(0)2 + x̄′(0)2). To
obtain a kind of Za and Zb for the complete EOM, Za(τ) = (x̄(τ)2 + x̄′(τ)2) and
Zb(τ) = (z̄(τ)2 + z̄′(τ)2) are computed after each simulation. The results of the
simulations are presented in Figure 7. For Za(0) = 0.202, the envelope of the LO
and phase plane of Za and Zb with the SIMs are shown in Figures 7a and 7d.
N Similarly, the envelopes and phase planes for Za(0) = 1 are found in Figures
7b and 7e and for Za(0) = 5 in Figures 7c and 7f. ES #3 is not shown on these
last 4 figures as not to overload them, as the same curves as NES #4 (blue) is
followed.
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The time where Za of the full EOM crosses Z−
a = 0.0202, indicated by the colored

squares on the figures, is defined here as ’fast pumping time’ Tpump,f:

Tpump,f = {τ : Za(τ) = (x̄(τ)2 + x̄′(τ)2) = Z−
a } (34)

This is compared to the pumping time computed from the slow flow in Table
1. Here, the relative difference ∆% between the fast and slow pumping time is
computed as:

∆% =
Tpump,f − Tpump

Tpump,f
(35)

For Za(0) = 0.2020, the slow flow pumping time underestimates the fast pump-
ing time fo for the conventional NESs (#1 and#2), and slightly overestimates
the fast pumping time for the BNESs (#3 and#4). As the energy increases, the
slow flow pumping time for NES #1 gets closer to fast pumping time while for
the NES other (NES #2-#4) slow flow pumping time becomes quite an overesti-
mation, especially the NESs with nonlinear geometric damping. For even higher
initial energies, this would also be the case for NES #1 [48]. The reason for the
faster pumping time for the full EOM is the presence of higher harmonics, see
for example, the wavelet transform of z̄ for NES #4 for Za(0) = 5 in Figure 8.
Only vibrations with frequency ωn were considered when deriving the slow flow
dynamics, which explains the incorrectly estimated slow flow pumping time when
other (higher) harmonics are present. As such, the presence of these higher har-
monics hastens the dissipation because these increase the damping forces, which
depend on the speed, significantly. The slow flow pumping time can still serve as
a qualitative comparison between NESs rather than a quantitative performance
measure to measure the absolute dissipation time.

However, the computation of (31) assumes the existence of the SIM mini-
mum, Z+

b , which requires the S-shaped structure of the SIM. This is not always
the case depending on the coefficients [17, 21]. For this reason, and the fact
that the pumping time is not correctly estimated for larger energies, the next
section presents a numerical optimization scheme for the full EOM to quantify
the performance over the whole parameter space correctly.

Finally, to verify that Za(0) > Z+
a is the energy threshold for the conventional

NESs, but not the BNESs, the full EOM is simulated for Za(0) = 0.18 < Z+
a .

The results are shown in Figure 9. The envelopes in Figure 9a show that the con-
ventional NES with linear and nonlinear damping fail in TET, while the BNESs
succeeds. The reason can be found by consulting the phase plane (Figure 9b),
where the conventional NES and the conventional with geometric damping are
attracted to the slow left branch, and the BNES is attracted to the right branch
even though the dynamics initiate well below the maximum of the SIM for the
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(a) (b) (c)

(d) (e) (f)

Figure 7: The envelope of the LO vibrations for Za(0) = 0.202 (a), Za(0) = 1 (b) and Za(0) = 5
(c), where the squares indicate when the residual energy is reached. On the phase plane of Za

and Zb the SIMs are compared to the simulation for Za(0) = 0.202 (d), Za(0) = 1 (e) and
Za(0) = 5 (f). The BNES with linear damping (NES #3) is omitted from the bottom figures to
not overload the figures. Black is NES #1, red NES #2, yellow NES #3 and blue NES #4.

BNES.

5. Numerical optimization of NESs

While the performance measures of the slow flow dynamics are fast to compute
and may serve as qualitative performance measures. They are not accurate in
measuring the absolute dissipation time. Therefore, a more accurate yet more
computationally intensive hybrid scheme is proposed here that still uses numerical
RK simulations while also incorporates some analytical aspects of the slow flow

Figure 8: The wavelet transform of z̄ of the NES #4 for Za(0 = 5).
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NES Tpump Tpump,f ∆%

Za(0) = 0.202

NES #1 45.9 54.21 15
NES #2 38 44.8 15
NES #3 38.8 35.9 -5.8
NES #4 27 28.6 -5.9

Za(0) = 1

NES #1 195 213 8.5
NES #2 137 132 -3.8
NES #3 175 161 -8.7
NES #4 95 86.7 -9.6

Za(0) = 5

NES #1 771 809 4.7
NES #2 426 357 -19.3
NES #3 740 639 -15.8
NES #4 269 213 -26.3

Table 1: Comparison of pumping time and fast pumping time for three levels in initial energy.
The parameters of the NES are mentioned at the beginning of Section 4.3. Tpump is computed
with (31), Tpump,f with (34) and ∆% with (35).

(a) (b)

Figure 9: The envelopes (a) and phase plane (b) for Za(0) = 0.18 < Z+
a for the four NESs.

The BNESs (NES#3 yellow, and NES #4 in blue) cause TET, even though the dynamics start
below the maximum of the SIM.
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dynamics. These measures will be computed from numerical simulation of the
full EOM (33). Two performance measures are defined that will be obtained from
the EOM that, similar to the slow flow measures, represents a measure for the
rate of dissipation and a measure for the residual energy.

5.1. Performance measures

To quantify the rate of dissipation, the y% dissipation time is defined here
as the time required for dissipating y% of the initial total energy Etot(τ) in the
whole system:

Tdiss,y% = {τ : Etot(τ) = (1− y%/100) · Etot(0)} (36)

where the total energy is the sum of the kinetic and potential energy in the
system:

Etot(τ) =
x̄′2(τ)

2
+

x̄2(τ)

2
+

ε(x̄′(τ) + z̄(τ)′)2

2
+

κz̄(τ)2

2
+

z̄(τ)4

4
(37)

Here, the total energy is preferred over the energy in the LO, because the total
energy is a monotonically decreasing function in time, while the energy only in
the LO might go back and forth between the NES (beating). In the numerical
simulations of the EOM, reaching (1 − y%/100) of the total energy is used as
a stopping condition of the simulation. This decreases the computational effort
significantly when investigating a vast space of coefficients. Here, the 70% dissi-
pation time is studied, where the condition (36) is τ : Etot(τ) = 0.3 · Etot(0), a
typically value [17]. To measure the degree of residual energy in the numerical
simulations, the ratio of the w% dissipation time (or time with (1−w)% residual
energy) and the y% dissipation time (or time with (1− y))% residual energy) is
computed, w > y. Here, it is opted for w = 95% and y = 70%:

τres,5% =
Tdiss,95%

Tdiss,70%
(38)

where a higher τres,5% indicates that relative to the 70% dissipation time, it takes
longer to dissipate to 95% of the total energy. As such, it is a relative measure
of how long residual energy remains. The measure is referred to as the relative
residual energy time.

5.2. Comparison of the four types of NESs

The 70% dissipation time and the relative residual energy time are deter-
mined for a conventional NES with linear damping (ξ̃gd = 0), a conventional
NES with geometric damping ()ξna = 0), a BNES with linear damping (ξ̃gd = 0
and κ = 0.5) and a BNES geometric damping (ξna = 0, κ = 0.5 and f̃2(0) = 0.5).

18



This is investigated for a range of damping values and initial energy Za(0) where
ε = 0.02 for all NESs. The results regarding the dissipation time are plotted in
Figure 10 and the logarithm of the relative residual energy time in Figure 11.
In both Figures, the conventional NES is Figure (a), the conventional NES with
geometric damping is Figure (b), the BNES with linear damping is Figure (c)
the BNES with geometric damping is Figure (d) .

Considering the dissipation time, Figure 10, all NES have an optimal zone
where the dissipation time is the lowest (dark blue zone). The threshold value
Z+
a , computed from (26) is plotted on the Figures for the conventional NES as

the full white line, Figures 10a and 10b. For ξna > 1/
√
3, the SIM for the NES

with linear damping has no maximum. This line approximately separates the
parameter space between an efficient (blue) and an inefficient (red) zone. For the
conventional NES, the maximum of the SIM is thus a valid energy threshold over
a wide range. Regarding the BNESs, Figures 10c and 10d, it is the minimum
of the SIM, Z−

a , that predicts well the zones of efficient and inefficient BNES.
To the left of this line, the BNESs performance is worse but not as bad as the
conventional NES. This is because of chaotic vibrations [18, 37, 38]. Compared to
the BNES with nonlinear damping, the BNES with linear damping has a larger
area to the left of this line, where the performance is reduced. To the left of
the grey full line in Figure 10c, the BNES with linear damping also has a very
low dissipation time. This is when the BNES stays near one of its stable points,
acting as a linear tuned mass damper [17, 18]. Unlike the white full line, this
grey full line is not computed analytically but drawn on the Figure to mark an
efficient area. In absolute terms, the BNES with nonlinear geometric damping
is the best-performing NES, with lower dissipation times over larger zones in
the parameter space. The conventional NES with geometric damping performs
better than the conventional NES but has the worst performance to the left of
the threshold line. Finally, the BNES with linear damping is the best type of
NES in the lower energy regions.

All dissipation time figures also have a dotted grey line. These stem from the
relative residual energy time plots, which is explained next.
Regarding the residual energy measure, all NESs have a low residual energy zone
( dark blue) and a high residual energy zone (light blue to red), separated on
Figure 11 by the dotted grey line. This line is drawn from observation, not from
an analytical formula. It is this dotted line that is also plotted on the dissipation
time plots, Figure 10. When the logarithm of the relative residual energy time
near 0 (dark blue) means that the dissipation times for 70% and 95% are close.
The delimitation of the high and low residual energy zones mainly depends on
the damping. So, although some high damping values may have brought a low
dissipation time in Figure 10, it may correspond to a high residual energy.
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The design an NES, the designer should focus on the optimal areas in Figure 10
to the right of the full white line and, if residual energy is not desired, below the
grey dotted line. The threshold value is computed analytically, while numerically,
the best absolute dissipation time is computed.

5.3. Influence of κ on the BNES performance

While the performance for the conventional NES and NES with geometric
damping can be assessed in the ξna-Za(0) parameter space, the BNES has an
additional parameter, the negative linear stiffness κ. The dissipation time for
κ = 0.25, κ = 0.5 and κ = 0.75 are plotted on Figure 12. The threshold between
TET and chaotic vibrations shifts to the right as κ increases. Additionally, the
zones of lowest dissipation time shift to lower ξ̃gd values as κ increases.

5.4. Optimization of the BNES for robust vibration control

Although the above-discussed performance plots allow tuning a well-performing
NES, these show that the zone of lowest dissipation speed is just to the right of
a threshold lines. A slight decrease in initial energy Za(0) because of uncertainty
or change of operation in the LO will yield a high dissipation time. Therefore, an
optimization scheme is proposed to obtain a robust BNES with geometric damp-
ing. The goal is to tune a BNES that is robust for a range of initial energies.
To take robustness around a central Za(0) in consideration, the following cost
function is proposed:

J(κ, ξ̃gd) =
1

3
Tdiss,70%(0.5Za(0)) +

1

3
Tdiss,70%(Za(0)) +

1

3
Tdiss,70%(2Za(0)) (39)

This cost function will also take into account (with equal weights) the dissipation
time for half and double the initial energy to ensure a fast dissipation for the
whole range of [0.5Za(0), 2Za(0)]. Other ranges can, of course also be proposed.
The logarithm of the cost function for Za(0) = 1 in function of κ and ξ̃gd is shown
in Figure 13. A narrow zone in the ξ̃gd − κ parameter space delimitates a robust
BNES. For higher κ a lower damping coefficient ξ̃gd is optimal. The most optimal
point, indicated by the grey square, is where κ = 1.04 and ξ̃gd = 1.16

6. Harmonic excitations

6.1. Equations of motion and Harmonic balancing

The NES performance is now investigated for the harmonically excited LO.
A force with frequency ω and magnitude F is added to equation (11):

mẍ+ cẋ+ kx+ cna(ẋ− ẋna) + cgd(x− xna)(ẋ− ẋna) + Fs(x− xna) = F cos(ωt)

mnaẍna − cna(ẋ− ẋna)− cgd(x− xna)(ẋ− ẋna)− Fs(x− xna) = 0
(40)
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(a) (b)

(c) (d)

Figure 10: Dissipation time for conventional NES (a), NES with geometric damping (b), BNES
with linear damping (κ = 0.5) (c)and BNES with geometric damping (κ = 0.5 and f̃2(0) = 0.5)
(d) . For each configuration ξ = 0. White full lines are analytically computed threshold values
(Z+

a for the NESs and Z−
a for the BNESs). The grey dotted lines separates the parameters

space in low and high relative residual energy time, obtained from Figure 11. The grey full line
in (c) separates chaotic and interwell vibrations.
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1.2

(d)

Figure 11: Residual energy for conventional NES (a), NES with geometric damping (b), BNES
with linear damping (c) and BNES with geometric damping (d).

(a) (b) (c)

Figure 12: Dissipation time for BNES with geometric damping with κ = 0.25 (a), κ = 0.5 (b)
and κ = 0.75 (c).
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Figure 13: Tuning a robust BNES with geometric damping where f̃2(0) = 0.5. Cost function
(39) is computed logarithmically. The grey square signifies the minimum of the cost function.

In dimensionless time, τ = ωnt, and relative absorber coordinate (z = xna−x)
the EOM become:

x′′ + εξx′ + x+ ε
(
z′′ + x′′

)
= εP cos(Ωτ)

ε
(
z′′ + x′′

)
+ εξnaz

′ + εξgd(z)z
′ + εfs(z) = 0

(41)

where P = F
ω2
nmna

and Ω = ω
ωn

.

As in the transient case, only the NES and BNES with (geometric) damping
will be studied, with the stiffness and damping forces reported in (14) and (16).
Then, with dimensionless displacement x̄ =

√
γx and z̄ =

√
γz, (41) becomes:

x̄′′ + εξx̄′ + x̄+ ε
(
z̄′′ + x̄′′

)
= εP̄ cos(Ωτ)

ε
(
z̄′′ + x̄′′

)
+ εξnaz̄

′ + ε
ξ̃gd
4

z̄2z̄′
(
z̄2 − κ

)2
z̄4

4 − κ
2 z̄

2 + f̃(0)2
+ z̄3 − κz̄ = 0

(42)

where P̄ = P
√
γ. The next step is HB in a single frequency Ω. The following

complex Manevitch variables facilitate this:

2A(τ)eiτ = x̄− i
x̄′

Ω
2B(τ)eiτ = z̄ − i

z̄′

Ω

′
(43)

where the original variables are then substituted by:

x̄ = A(τ)eiΩτ +A∗(τ)e9iΩτ z̄ = B(τ)eiΩτ +B∗(τ)e9iΩτ

x̄′ = iΩ(A(τ)eiΩτ −A∗(τ)e9iΩτ ) z̄′ = iΩ(B(τ)eiΩτ − iB∗(τ)e9iΩτ )

x̄′′ +Ωx̄ = i2ΩȦeiΩτ z̄′′ +Ωz̄ = i2ΩḂeiΩτ

(44)
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Substituting (44) into (42) and keeping only the terms with frequency Ω yields:

i2ΩȦ+ iεζΩA+ (1− Ω2)A+ ε(i2ΩḂ − Ω2B + i2ΩȦ− Ω2A) =
εP̄

2

i2ΩḂ + 2iΩȦ− Ω2B − Ω2A+ ξnaiΩB + ξ̃gdiΩBH̃(|B|) +BG(|B|) = 0

(45)

where H and G are the same expressions as for the transient case. In steady
state (Ȧ = Ḃ = 0), (45) is reduced to:

iζ
√
XA+ σA−XB −XA =

P̄

2

−XB −XA+ ξnai
√
XB + ξ̃gdi

√
XBH̃(B,B∗) +BG(B,B∗) = 0

(46)

with X = Ω2 and εσ = 1 − X. The stability of the steady state solutions is
computed in Appendix C. Next, the equations can be manipulated to obtain
two equations in Za = a2 and Zb = b2 with A = a

2e
iα and A = b

2e
iβ. The first

one is a SIM between Za and Zb:

X2Za = Zb

(
X

(
ξna + ξ̃gdH̃(Zb)

)2
+ (X −G(Zb))

2

)
(47)

and the second a SIM that relates Zb with P̄ :[
(X − σ)(G(Zb)−X) +Xξnaξ +Xξ̃gdξH̃(Zb) +X2

]2
Zb

+X
[
ξ(G(Zb)−X) + (σ −X)(ξna + ξ̃gdH̃(Zb))

]2
Zb

=
(
XP̄

)2 (48)

Per excitation level P̄ , a frequency response can be computed by first solving (48)
for Zb and computing the corresponding Za from (47). The frequency responses
obtained from HB (referred to as HB FR) are now compared to time simulations
from the full EOM, (42). The same NESs #1-#4 as mentioned in the beginning
of Section 4.3 are studied. This time, the LO has a damping ratio of ξ = 0.5,
which corresponds with a damping ratio of 0.5%.

6.2. Comparison Runga-Kutta and Harmonic Balancing: conventional NESs (NES
#1 and #2)

6.2.1. Characteristic regimes

The relation between the HB FR and the RK simulation for NES #1 (the
conventional NES with linear damping) is studied in detail in Figure 14. Figure
14a shows the HB FR for several levels of P̄ , where a =

√
Za, and Figure 14b
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features two SIMs computed from (47) for Ω = 1 and Ω = 0.965. The full lines
correspond to stable solutions, while the dashed correspond to unstable solutions.
These SIMs have the distinctive S-shape similar to the transient case. The am-

plitude a corresponding with the maximum and minimum of the SIM,
√

Z+
a and√

Z−
a , are drawn as the black dashed line on Figure 14a.

Similar to the transient case, the maximum and minimum of the SIM play an
important role in explaining the behavior of the NES near resonance. As the
load magnitude increases, the HB FR (Figure 14a) distorts and saturates around
the Z+

a line, where the response is unstable. For P = 0.7, a bifurcation creates
an isolated response between Ω = 0.96 and 0.98. This isola is an undesirable
response, as it has a much higher a amplitude than without the NES.

The RK simulations are done for P̄ = 0.7 at resonance Ω = 1 and at Ω = 0.965,
as noted in yellows squared on the FR. The latter frequency has the isola solu-
tions, and is simulated for x′(0) = 0 and x′(0) = 0.5. The time simulations are
presented in Figures 14c to 14e, and in state space on the SIM of Figure 14b.
For Ω = 1, Figure 14c, the so-called strongly modular response (SMR) occurs,
where the vibrations of both the NES and the LO modulate. The blue color on
the time simulations indicates the envelope, which is also plotted in state space.
The mechanism behind the SMR is the SIM. Just like for the transient case,
the right branch of the SIM is descended, where the LO vibration’s amplitude
decreases. Once the minimum of the SIM is reached, the dynamics go to the left
branch. Unlike the transient case however, the dynamics now climb up the left
branch. Once the maximum of the SIM is reached, the dynamics return to the
right branch. This explains the periodic modulation of the vibration amplitude.

The minimum and maximum of the SIM,
√

Z+
a and

√
Z−
a , indicate this mod-

ulation’s maximum and minimum amplitude. The SMR occurs for frequencies
around resonance where the branch is unstable [10].

For Ω = 0.965, the HB FR has three solutions. The RK simulation for x′(0) = 0,
Figure 14d has a low amplitudes and is on the left branch on the SIM, and on
the main branch of the HB FR. For x′(0) = 0.5, Figure 14e, both the LO and
NES have a higher amplitude, indicating it is on the isola on the HB FR. This
shows that the isola are detrimental for the NES vibration control performance.
NES #2 has nonlinear damping but has the same characteristic regimes, so the
analysis is not repeated.

6.2.2. Comparing NES #1 and NES #2

The HB FR and RK conventional NES with linear and nonlinear damping
are now compared with for P̄ = 0.9 in Figure 15. The HB FR is shown in black,
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(a) (b)

(c) (d) (e)

Figure 14: Comparing HB and RK and characteristic regimes for NES #1 (ξna = 0.13 and
ξ̃gd = κ = 0) . FR from HB (a) for several levels of P̄ (a) with stable (full) and unstable
(dashed) responses, SIMs for two different frequencies (b), RK for Ω = 1 (c), RK for Ω = 0.965
and x̄′(0) = 0 (d) and x̄′(0) = 0.5. (e)

the maximum and minimum of the SIM in black dashed and the RMS value of
the RK simulation as blue dots. When there is SMR, the vibrations modulate.
To indicate this on the FR, the RK’s minimum and maximum amplitude are also
plotted with the orange and yellow dots, respectively. Figure 15a is the FR for
NES #1 and Figure 15b for NES #2. For both NESs, the RK RMS follows the

HB curve, until the HB curve saturates around the
√
Z+
a -line. At that point,

the RK shows SMR, with RMS max approximately equal to
√

Z+
a and RMS min

approximately equal to
√

Z−
a . However, The HB FR value does not represent

the RK RMS value. Observing the HB, the isola for NES #1 is much larger.
Furthermore, between Ω = 0.97 and Ω = 0.98, the RK RMS is on the isolated
response, even though each simulation has x′(0) = 0. Although NES #2 also
has an isola, the RK RMS is never on it and the isola corresponds to lower a.
Furthermore, at resonance Ω = 1, the RMS of NES #1 is 0.36 while NES #2 is
0.29. The geometric nonlinear damping has a lower RMS response and is more
robust against the high responses of the isolas.
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(a) (b)

Figure 15: Frequency response from HB (black) and RK (dots) around resonance, (a) for NES
#1 (ξna = 0.13 and ξ̃gd = κ = 0) and (b) NES #2 (ξ̃gd = 0.4 and ξna = κ = 0).

6.3. Comparison Runga-Kutta and Harmonic Balancing: Bistable Stiffness

6.3.1. Characteristic regimes

Figure 16 investigates the relation between HB and RK in the case of NES
# 3, the bistable NES with linear damping. Figure 16a shows the FR from HB.

Compared to the FR of NES #1, Figure 14a, the
√

Z+
a is much higher is much

higher. For Ω = 1, the time simulation and phase plane are shown in Figure 16c
and 16b, respectively. Although this is SMR, the phase plane shows that the
maximum of the SIM is not reached. The right branch is descended, however,
once the minimum of the SIM is reached, the NES vibrates chaotically in the time
simulation. Then, the dynamics again go to the right branch, to descend the SIM
again. This process repeats. The energy threshold, the vibration amplitude in
the LO for which the NES activates, is much lower than the maximum of the
SIM, just like in the transient case for BNESs

Other vibration regimes are the interwell vibrations at Ω = 0.93, Figure 16d,
and purely chaotic vibrations, Figure 16e. As the HB scheme does not model
these regimes, these vibration regimes are not situated on the SIM, Figure 16b.
Furthermore, these regimes don’t result in significant vibration damping [37, 38].

6.3.2. Comparing NES #3 and NES #4

To better understand the vibration damping performance for bistable NESs,
the HB FR is now compared to RK simulations for P̄ = 0.9 for NES #3 on Figure
17a and for NES # 4 on Figure 17b. Both NES have similar behavior. The RK
RMS follows the HB FR until the minimum and maximum values diverge under

SMR. From that point, the RK min follows the
√
Z−
a line closely, the minimum

of the SIM, while the RK max is much lower than the
√

Z+
a line. This is because

under the SMR regime, the dynamics do not fully climb the SIM. The RMS is,
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(c) (d) (e)

Figure 16: Comparing HB and RK and characteristic regimes, for NES #3 (ξna = 0.11, ξ̃gd = 0
and κ = 0.5). FR from HB (a) for several levels of P̄ with stable (full) and unstable (dashed)
responses, SIMs for two different frequencies (b), RK for Ω = 1 (c), RK for Ω = 0.93 (d) and
Ω = 0.95 (e).

for the most part, under the HB line. As such, near resonance, the HB FR value
is not representative for the RMS and maximum value of the RK. The RK min

is predicted well by the
√

Z−
a line. The main difference between the two NESs is

the much smaller isola for NES #4, thus confirming that nonlinear damping has
a positive effect in reducing the isola. The RMS of NES #3 is 0.28 while NES
#4 is 0.24.

7. Parameter study and Isola tuning

7.1. Effect of isola

When comparing the HB FR and RK under SMR, the HB FR can predict the
maximum and minimum of the modulation for NESs # 1 and #2, but only the
minimum of the modulation for bistable NESs, NES# 3 and #4. Furthermore,
the amplitude obtained from HB does not represent the RK RMS under SMR.

The HB FR also indicates when an isola appears, and when the isola touches
the main branch. In Figure 15a, the isola touches the main branch, and for some
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(a) (b)

Figure 17: Frequency response from HB and RK around resonance, (a) for NES #3, (ξna = 0.11,
ξ̃gd = 0 and κ = 0.5) and (b) NES #4 (ξna = 0, ξ̃gd = 1.14, κ = 0.5 and f̃2(0) = 0.5.)(b).

Ω, the response goes to the top stable branch, resulting in undesirable high ampli-
tude vibrations. For zero initial conditions, the RK simulation will only go to the
isola if the isola touches the main branch. This conjecture is tested in Figure 18a.
For a conventional NES with linear damping, the P̄ for which the isola appears
and touches is computed from HB, in function of ξna. For ξna = 0.13 (=NES
#1) the isola appears for P̄ = 0.67 and touches the main branch at P̄ = 0.88.
Then, with RK simulations with zero initial conditions, the value for P̄ where the
RK RMS jumps to the isola is detected. Figure 18a confirms numerically that
jumping to a higher branch will happen in the RK simulation if the isola touches
the main branch.

A hybrid approach incorporating HB and RK is proposed to design the NES.
The vibration amplitude of the LO at resonance (Ω=1) is obtained from RK
simulations rather than HB, as the HB FR does not accurately represent the
vibration amplitude at SMR. The HB FR will be used to find when the isola
appears and touches the main branch. A designer can then opt to tune such that
the isola does not touch the branch or that no branch appears at all. The latter
is safer if initial conditions may occur that put the dynamics in the isola, even if
the isola does not touch the main branch.

7.2. Parameter study

Figures 19 and 20 plot the RK RMS values at resonance of the LO with the
conventional NES with (non)linear damping and BNES with (non)linear damp-
ing, respectively. The load range is P̄ = [0, 2] while the damping ranges are
chosen such that an RMS value of 1.2 is the maximum value.

For each configuration, the lines where isolas appear (white dotted) and isolas
touch the main branch (white dash) are plotted. Below the isola lines, there are
mainly vertical contour lines, which implies that for a given damping, the RMS
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(a) (b)

Figure 18: (a) The P̄ where isola appears (red dash) and touches the main branch (blue dotted)
for HB and when the upper stable isola branched in reached in RK (black), for a range of ξna.
(b) For ξna = 0.13, the isola appears for P̄ = 0.67 and touches the FR for P̄ = 0.88. κ = ξ̃gd = 0.

value saturates over a range of P̄ . Above the isola lines the contour lines become
more horizontal, indicating increasing RMS with increasing force magnitude P̄ .
When comparing the RMS of the conventional NES and BNES with linear damp-
ing ( Figures 19a and 20a) to those with nonlinear damping (Figures19b and 20bà,
the NESs with nonlinear damping have a larger area with lower RMS values than
the NESs with linear damping. Especially, the BNES with nonlinear damping
has the most blue, ’optimal’, regions.
To design an NES, it opted here to tune the damping such that for a particular
P̄tune, the isola touches the main branch. As such, the NES is robust for exci-
tations until this tuned load magnitude. The RMS value at resonance may still
be low above P̄tune, as the isola are to to the left of resonance. The the jump to
the isola will only occur under slight shifts of the forcing frequency or on ramp
up or ramp down. The tuning can be done visually on the Figures 19 and 20 by
drawing a horizontal line at P̄tune and finding the corresponding value where this
line intersects the white dashed isola touching the line.
For P̄tune = 1, this obtains a conventional NESs with linear damping ξna = 0.19
and nonlinear damping ξ̃gd = 0.46 and BNESs with linear damping ξna = 0.14
and nonlinear damping ξ̃gd = 0.7. For this tuning, the RK RMS at resonance
for a range of P̄ is shown in Figure 21a. Despite increasing load magnitude, all
NESs have a range where the RMS saturates. Beyond P̄ = 1, where the isola
touches the main branch, the saturation is lost and the RMS increases after a
sharp decrease. If further robustness is required, P̄tune can be increased to 1.5.
Figure 21b shows the obtained damping values and RMS. Similarly, a saturation
region is seen, followed by a loss of saturation. For each tuning, the NESs with
nonlinear damping perform better than their linear damping counterparts. For
P̄ = 1, the BNES with linear damping performs similarly to the conventional
NES with nonlinear damping. However, for P̄ = 1.5, both NESs with nonlinear
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Figure 19: The RK RMS at Ω = 1 in function of ξna and P̄ for conventional NES with linear
damping (a), κ = ξ̃gd = 0 , and function of ξ̃gd and P̄ for conventional NES with nonlinear
geometric damping, (b) κ = ξna = 0. The dotted white line is when the isola appears in the HB
FR, and the white dashed line when the isola touches the main branch.

damping are much better than the NESs with linear damping. For both P̄tunes,
the BNES with nonlinear damping is the superior NES.

8. Conclusion

In this paper, a device was proposed to tailor nonlinear stiffness and nonlin-
ear geometric damping. It consists of a mass-spring-damper where the ends of a
linear spring and a linear damper are compressed according to some function that
generates a nonlinear damping and spring force. The methodology allows tailor-
making of both nonlinear spring and damping forces. This device is used here to
obtain an NES that damps vibrations for a main structure that is a linear oscilla-
tor. In particular, the nonlinear geometric damping obtained from hardening and
bistable stiffness (the BNES) are studied. Harmonic balancing was applied and a
slow invariant manifold (SIM) was obtained for impulsive loading. From the SIM,
two performance measures were derived, the residual energy and the pumping
time for generic nonlinear spring force and nonlinear damping. These measures
showed was found that the bistable NES with nonlinear damping is the most
efficient and robust NES. However, for high impulsive loads, these performance
measures were not accurate in the describing the actual performance of the full
equations of motion (EOM), because of the existence of higher harmonics. There-
fore, a dissipation time and residual energy measure were defined for numerical
simulations of the full EOM, which describe NES performance more accurately.
These measures also showed that the BNES with nonlinear damping is the more
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(a) (b)

Figure 20: The RK RMS at Ω = 1 in function of ξna and P̄ for bistable NES with linear
damping (a), κ = 0.5, ξ̃gd = 0, and function of ξ̃gd and P̄ for bistable NES with nonlinear
geometric damping (b), κ = 0.5, ξna = 0 and f̃2(0) = 0.5. The dotted white line is when the
isola appears in the HB FR, and the white dashed line when the isola touches the main branch.

(a) (b)

Figure 21: Tuning to avoid isola touching at P̄tune = 1 (a) and P̄tune = 1.5 (b) for NES with linear
and nonlinear damping, and BNES (κ = 0.5) with linear and nonlinear damping (f̃2(0) = 0.5) .
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robust and efficient NES of the investigated configurations. A hybrid approach
to tune the NES was proposed, using both the analytical tools from the SIM
and the numerical measures. The NES performance under harmonically loaded
linear oscillator was also investigated. Under the strongly modulated response
regime, the LO’s vibrations are reduced greatly around resonance. However, the
frequency response obtained from harmonic balancing showed isolated responses,
with high LO amplitudes. A tuning scheme was proposed based on the existence
of this isola. The NESs with nonlinear damping, especially the BNES, were
shown to be the best NES configuration under this scheme. The proposed device
opens up a whole new area of study of nonlinear damping types that, up until
now, were typically only limited to z2ż because of existing devices so far. Future
research will focus on the realization of the proposed device, and optimization of
the device’s shape to obtain other stiffness than bistable or hardening.
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Appendix A. Integrals

Appendix A.1. Nonlinear stiffness

To compute the integral (21), it is assumed that B is constant over the single
period of integration, Beiτ +B∗e9iτ = b cos(τ + β). Furthermore, the variable of
integration is substituted by τβ = τ+β. The integral in (21) where fs = γz3−κz
then is:

BG(|B|) = 1

2π

∫ 2π

0
fs

(
Beiτ +B∗e9iτ

)
e9iτdτ

=
beiβ

2π

∫ 2π

0

(
γb2 cos3(τβ)− κ cos(τβ)

)
e9iτβdτβ

=
b

2
eiβ

(
3γ

4
b2 − κ

)
= B

(
3γ|B|2 − κ

)
(A.1)

as such, G(|B|) = 3γ|B|2 − κ, G(b) = 3γ
4 b2 − κ or G(Zb) =

3
4Zb − κ.

Appendix A.2. Nonlinear geometric damping

The nonlinear geometric damping cgd(z) obtained from (6) is even, which
allows some simplification of the integral:

BH(|B|) = 1

2π

∫ 2π

0
cgd

(
Beiτ +B∗e9iτ

) (
Beiτ −B∗e9iτ

)
e9iτdτ

=
beiβ

2π

∫ 2π

0
cgd (cos(τβ)) sin

2(τβ)dτβ

(A.2)

For cgd = ξ̃gdγz
2:

BH(|B|) = ξ̃gdγ
b3eiβ

2π

∫ 2π

0
cos2(τβ) sin

2(τβ)dτβ

= ξ̃gdγ
b3eiβ

8
= ξ̃gdγB|B|2

(A.3)

or , H(|B|) = ξ̃gdγ|B|2 and H(b) = ξ̃gdγ
b2

4 . For cgd = ξ̃gdγz
2 (γz2−κ)

2

γ2

4
z4−κγ

2
z2+f̃(0)2

:
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BH(|B|)

= ξ̃gdγ
b3eiβ

8π

∫ 2π

0

(
γb2 cos2(τβ)− κ

)2
γ2

4 b
4 cos4(τβ)− κγ

2 b2 cos2(τβ) + f̃(0)2
sin2(2τβ)dτβ

= ξ̃gdγB
|B|2
8π

∫ 2π

0

(
γ|B|2 cos2(τβ)− κ

)2
γ2

4 |B|4 cos4(τβ)− κγ
2 |B|2 cos2(τβ) + f̃(0)2

sin2(2τβ)dτβ

(A.4)
or

H(Zb)

= = ξ̃gd
Zb

8π

∫ 2π

0

(
γZb cos

2(τβ)− κ
)2

Z2
b
4 cos4(τβ)− κZb

2 cos2(τβ) + f̃(0)2
sin2(2τβ)dτβ

(A.5)

The integral cannot be further evaluated analytically, but is easily approximately
solved through a Taylor series approximation or is easily computed numerically.

Appendix B. Stability of SIM

The stability of the solutions on the SIM are computed with the 2nd equation
of (23). Linearizing this equation around equilibrium Beq = b

2e
β obtained from

the solutions of (24) gives the following set of equations:[
∆̇B

∆̇∗
B

]
=

[
a11 a12
a21 a22

]
︸ ︷︷ ︸

Σ

[
∆B

∆∗
B

]
(B.1)

where ∆B = B −Beq and

a11 = a∗22 = − i

2
− ξna

2
+

i

2

∂(B ·G(B,B∗))

∂B

∣∣∣∣
B=Beq

− 1

2

∂(B ·H(B,B∗))

∂B

∣∣∣∣
B=Beq

a12 = a∗21 =
i

2

∂(B ·G(B,B∗))

∂B∗

∣∣∣∣
B=Beq

− 1

2

∂(B ·H(B,B∗))

∂B∗

∣∣∣∣
B=Beq

(B.2)
Finally, the stability is determined by computing the eigenvalues of Σ matrix

in (C.1). If any eigenvalue has a positive real part, the solution is unstable.
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Appendix C. Stability under harmonic load

The stability of the harmonic balanced solution (45) is computed from the
linear stability around equilibrium of A and B:

2i
√
X


∆̇A

∆̇∗
A

∆̇B

∆̇∗
B

 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


︸ ︷︷ ︸

Σ


∆A

∆∗
A

∆B

∆∗
B

 (C.1)

where ∆A = A−Aeq, ∆B = B −Beq and

a12 = a21 = a32 = a41

a11 = −a∗22 = −εσ − iεξ
√
X

a13 = −a∗24 = iεξna
√
X + ε

∂(B ·G(B,B∗))

∂B

∣∣∣∣
B=Beq

+ iε
√
Xξ̃gd

∂(B · H̃(B,B∗))

∂B

∣∣∣∣∣
B=Beq

a14 = −a∗23 = ε
∂(B ·G(B,B∗))

∂B∗

∣∣∣∣
B=Beq

+ iε
√
X ξ̃gd

∂(B · H̃(B,B∗))

∂B∗

∣∣∣∣∣
B=Beq

a31 = −a∗42 = εσ + iεξ
√
X +X

a33 = −a∗44 = X − 1 + ε

ε
a13

a34 = −a∗43 = −1 + ε

ε
a14

(C.2)
The stability is then determined from the eigenvalues of Σ

2i
√
X
.
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