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Abstract A nonlinear energy sink (NES) passively reduces
transient vibration energy of a typically impact loaded me-
chanical system. It is locally connected to the vibrating sys-
tem through a nonlinear connecting stiffness. For a NES to
perform efficiently, through targeted energy transfer (TET),
the vibration levels need to exceed a well defined threshold,
below which the NES performs poorly. This threshold can
be lowered by considering a NES with a bi-stable connect-
ing stiffness. A bi-stable NES (BNES) has two stable equi-
libria. Besides vibrating in TET regime, a BNES can also vi-
brate chaotically or close to one of its equilibria, called intra-
well vibrations. However, during both chaotic and intra-well
vibrations, the mitigating performance of the BNES is poor.
Here, a novel tuning method is developed, which finds the
boundary between chaotic and TET regime, such that the
BNES avoids the chaos and operates with the more per-
formant TET. This boundary is found by numerically cal-
culating the Lyapunov exponent, a measure for chaos. To
quantify performance, two algebraic expressions, requiring
no simulations, are derived in the paper expressing the speed
of vibration mitigation and expressing the residual vibration
energy left after TET. The result is a generic tuning method-
ology that not only ensures the BNES operates in the effi-
cient TET regime, but also guarantees optimal speed of vi-
bration mitigation. The developed performances measures in
function of the NES’s parameters are to the point and easy
to use. The tuned BNES shows a superior robustness w.r.t
detuning compared to the linear vibration absorbers.
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1 Introduction

A nonlinear energy sink (NES) is a vibration absorber, lo-
cally connected with a nonlinear stiffness to a vibrating me-
chanical system. It is an alternative to a linear tuned mass
damper (TMD), which has linear connecting stiffness. A
TMD is sensitive to a single resonating frequency, therefore
a TMD is tuned to closely match the vibration frequency
of the mechanical system. If this vibration frequency shifts
during operation (detuning), the TMD’s performance drops
drastically. On the other hand, a NES has an energy-dependent
resonating frequency [1,2] and as such is able to perform ef-
ficiently over a wider range of vibration frequencies. The
nonlinearity of the NES makes the compound system more
difficult to analyze than linear counterparts. In [1, 3, 4], the
NES with cubic stiffness was analyzed through Nonlinear
Normal Modes (NNMs). NMMs track the shifting resonat-
ing frequencies and steady state vibration shapes of the con-
servative nonlinear system for different initial energies. The
behavior of the NES is divided into a low, mid and high en-
ergy regime. For low initial energy, the NES performance
is abysmal. Above a clearly defined energy threshold, the
NES performance vastly improves. The vibration energy is
quickly transferred from the main system to the NES, where
it is dissipated. This signifies the mid energy regime.

The sudden irreversible energy transfer from the vibrat-
ing system to the NES was dubbed targeted energy transfer
(TET). This transient energy transfer mechanism has a few
peculiarities. First, TET mitigates vibrations over a finite
time while TMD damps them exponentially. Second, there
will be remaining residual energy after TET which is dissi-
pated very slowly. The residual energy is caused by transi-
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tion from mid to low energy regime as the vibrations energy
is reduced.

Increasing the initial energy even more gradually dimin-
ishes the performance. NMMs are obtained from the conser-
vative system, therefore performance measures as the speed
of vibration mitigation or residual energy cannot be obtained
from them. In [1–6], the mitigation speed has been assessed
through extensive numerical simulations of the damped com-
pound system. This is opposite to the TMD, where the de-
cay of the vibration is found from the poles of the compound
system and is tuned by pole placement of LTI systems.

The performance of the NES is almost exclusively ex-
pressed in the percentage of initial energy dissipated in the
NES, [1, 4, 5, 7–14], the complement of the residual energy.
In the mentioned works it is obtained from numerical sim-
ulation. An even more important performance measure is
the decay rate of the vibrations in the mechanical system,
but for NESs has been given limited attention. In [10, 11],
an exponential decay rate was fitted on numerical simula-
tion to make the analogy of linear viscous damping. In [15],
the time for the NES to mitigate 70 % of the initial vibra-
tion energy was determined from simulations as well. Other
research investigated tuning and performance of the NES
with approximate static formulas, [16, 17], where the non-
linear stiffness coefficient and damping could be analyti-
cally tuned to ensure that the NES vibrates in the performant
mid-energy range. By ensuring this mid-energy regime and
restricting to undamped main systems, a static algebraic for-
mula was derived of both the duration of TET, related to the
decay, called the pumping time and the residual energy after
TET in [17]. The results in [17] are obtained without sim-
ulations. This point is almost never adopted in literature. In
a preliminary work of the authors of this paper [18], these
results were extended to other NESs and damped main sys-
tems. Here, these performance measure will be extensively
applied. As the pumping time and residual energy can now
be assessed without simulation, the influence of parameters
as main system damping, NES damping, and other nonlin-
earities on NES performance can be easily analyzed. It was
seen in [18] that TET performance is a balancing act be-
tween less residual energy after TET or higher decay rate
during TET.

To increase the efficient energy range of the NES, a bi-
stable NES (BNES) has been proposed by adding a neg-
ative linear stiffness part to connecting stiffness. It is bi-
stable as it has 2 stable equilibria along with an unstable
one. Here, the influence of the BNES on pumping time and
residual energy will be investigated. The use of a bi-stable
absorber by means of a truss was first studied in [19] and
later associated with efficient TET in [12,13]. 10 years later
the BNES was put in the spotlight with a series of inno-
vative papers [7, 14, 15, 20], where the increased efficiency
range over other NESs was highlighted. In [20] the NNMs

of the compound system revealed a larger mid-energy range.
Furthermore, numerical simulations shows an increased, but
still suboptimal, performance in the low-energy ranges but
also a possibility of a chaotic regime [15, 20, 21]. In the
chaotic regime the performance of the BNES severely de-
teriorates. The boundary between efficient TET and chaos
has to be predicted numerically on a reduced-order system
[6, 14], by calculating the Lyapunov exponent from simu-
lation. The Lyapunov exponent is a quantitative measure of
chaos, defined as the average exponential growth or decay
of nearby orbits near a certain initial condition. Here, the
Lyapunov exponent will be employed such that the subopti-
mal chaotic regime is avoided. In [15] the bi-stable property
is exploited such that the BNES behaves as a TMD during
intra-well vibrations. This way, the residual vibration energy
can be dissipated swiftly.

Recently, some papers have focussed on applications.
In [8], a BNES was fitted with an electromechanical energy
harvesting device. The efficiency, expressed in fraction of
the impulsive energy that was harvested, was obtained from
comprehensive numerical simulations. It was also found that
the most energy was transferred during TET. These findings
where later on experimentally verified [9]. A BNES con-
structed from repulsive magnets was presented in [22], and
later used to reduce vibrations in multi-story structure [23].

Although great advances have been made, previous stud-
ies of the BNES focus mostly on undamped main systems,
NES performance calculated after extensive and time con-
suming numerical simulation, and no widely applicable tun-
ing rules are formulated. The main contributions of this pa-
per are: 1) Developing a novel tuning methodology, applica-
ble to a broad class of mechanical systems. The tuning will
ensures operation in the TET regime and avoids the chaotic
and intra-well regime. 2) Quantifying the pumping time and
residual energy with 2 static algebraic expressions in func-
tion of the system’s and BNES’s parameters. These perfor-
mance measures are also formulated for damped main sys-
tems. This way no numerical simulations are required, aid-
ing insight in NES performance. 3) BNES parameter study
on both performance and occurrence of chaotic regime, vi-
sualized on chaos - performance plots. 4) Showing the su-
perior robustness of a BNES w.r.t. TMD under an uncertain
main system and finally that 5) the vibration decay in the
main system has linear pace instead of the previously as-
sumed exponential pace during TET.

The paper is structured as follows, in the nest section,
the dynamics of the NES coupled to the mechanical sys-
tems are derived. In section 3 the three vibration regimes of
BNES, i.e. TET, chaotic and intra-well are shown, to make
the reader familiar with BNES’s behavior. The dynamics of
the compound system are nonlinear and therefore are sim-
plified in section 4 with perturbation series and the two time
scales technique to yield the so-called slow flow dynamics,
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which reveal a slow invariant manifold. This manifold is
used in section 5 to deduce the algebraic formulas express-
ing the performance measures pumping time and residual
energy.

In section 6 the novel tuning methodology is covered,
based on the calculation of the Lyapunov exponent, where
the BNES coefficients are chosen as such that chaos is avoided.
Then, in section 7, with tuning methodology and perfor-
mances measures available, a BNES is designed for a single-
mode vibrating system by constructing chaos - performance
plots. Its algebraic performance is compared to other NESs,
revealing superior behavior. To verify the tuning and per-
formance, the compound system is also numerically simu-
lated. The influence of NES damping, mass ratio and initial
conditions on NES performance and the chaotic boundary
is also assessed. Finally, The robustness and performance of
the BNES is compared to the standard solution linear TMD,
by tracking the relative change in pumping time (for BNES)
and settling time (for TMD) if the vibrating frequency of the
main system shifts.

2 System Dynamics

The considered vibrating mechanical system is a linear multi-
degree-of-freedom (MDOF) system which is proportionally
damped, with physical coordinate vector x ∈ Rn, mass ma-
trix M ∈ Rn×n, stiffness matrix K ∈ Rn×n and damping ma-
trix C ∈ Rn×n. By solving the eigenvalue problem, n eigen-
frequencies ωi and the eigenvector matrix, E = [e1 e2
. . . en] ∈ Rn×n are obtained. These allow for modal de-
composition x = Eq, with q ∈ Rn the modal coordinates.
Then, by attaching the BNES to coordinate x`. The dynam-
ics in modal coordinates of the compound system are:

Mqq̈+Cqq̇+Kqq+ e∗(`)T (cna(ẋ`− ẋna)

+ kna(x`− xna)
3 + klin(x`− xna)) = ET F

mnaẍna + cna(ẋna− ẋ`)+ kna(xna− x`)3

+ klin(xna− x`) = 0

(1)

with e∗(`)∈Rn×1 the `-th row of E, Mq =ET ME the modal
mass, Cq = ET CE the modal damping and Kq = ET KE
the modal stiffness matrix.The NES behaves as a BNES for
klin < 0. The connecting force of the NES on the main sys-
tem can be replaced by its inertia force:


Mqq̈+Cqq̇+Kqq+ e∗(`)T mnaẍna = ET F
mnaẍna + cna(ẋna− ẋ`)+ kna(xna− x`)3

+ klin(xna− x`) = 0
(2)

The equations are simplified by assuming a single vibra-
tion mode i : x(t) =

∑
n
k=1 ekqk(t) = eiqi(t) and only considering transient vibra-

tions, F = 0n×1. The physical coordinate x` = ei(`)qi is rein-
troduced:


mq,i

ei(`)
ẍ`+

cq,i

ei(`)
ẋ`+

kq, i
ei(`)

x`+mnaei(`)ẍna = 0

ε ẍna + ελna(ẋna− ẋ`)+ εΩ3ω
4
i (xna− x`)3

+ εκω
2
i (xna− x`) = 0

(3)

with mq,i = Mq(i, i), kq,i = Kq(i, i) and cq,i =Cq(i, i). The
n+1 DOF problem is reduced to a 2DOF problem, depicted
on Figure 1.
Dividing the first equation by ei(`) yields:

ẍ`+ ελ ẋ`+ω
2
i x`+ ε ẍna = 0

ε ẍna + ελna(ẋna− ẋ`)+ εΩ3ω
4
i (xna− x`)3

+ εκω
2
i (xna− x`) = 0

(4)

with

ελ =
cq,i

mq,i
ω

2
i =

kq,i

mq,i
ε =

mnae2
i (`)

mq,i

κ =
klin

mnaω2
i

λna =
cna

mna
Ω3 =

kna

mnaω4
i

Although (4) is derived from an MDOF main system, it is
also valid for an SDOF main system with mass m, damping
c and stiffness k equipped with a BNES granted if mq,i = m,
kq,i = k, cq,i = c and ei(`) = 1.

For κ < 0, the system has 3 equilibrium points. Through
linearization it can be shown that first one, x∗,1 = {x∗`,1;x∗na,1}=
{0,0}, is unstable, while the other two x∗2,3 =

{
x∗,2,3` ;x∗,2,3na

}
={

0,± 1
ωi

√
−κ

Ω3

}
are stable. To describe small vibrations about

both stable equilibria, the so-called the intra-well vibrations,
(4) is linearized about x∗2,3:

∆ ẍ`+ ελ∆ ẋ`+ω
2
i ∆x`+ ε∆ ẍna = 0

ε∆ ẍna + ελna(∆ ẋna−∆ ẋ`)+2εκω
2
i (∆xna−∆x`) = 0

(5)

where the nonlinear coefficient kna has completely dis-
appeared. If in (5) κ = −0.5, the BNES acts as a linear
TMD, as the linearized eigenfrequency of the absorber equals
the vibration frequency of the vibrating structure. The ab-
sorber performance for κ = −0.5 will compared to others
choices of κ further on. The nonlinear differential equation
in (4) does not have an exact analytical solution. Therefore,
semi-analytic techniques will be applied in Section 4 which
will result an approximate solution on a slow time scale.

Next, the characteristic vibration regimes of the BNES
are shown.
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Fig. 1: The equivalent 2DOF, (4), deduced from single-mode
vibrating mechanical systems fitted with a NES

3 Vibration regimes of a BNES

A single-degree-of-freedom mechanical system with m = 1
kg, k = 1 N/m, c = 0.002 Ns/m and coordinate x features a
BNES with mna = 0.02 kg, klin =−0.006 N/m, cna = 0.002
Ns/m, kna = 0.444 N/m3 and coordinate xna.

For ẋ(0) = 0.1 m/s, TET occurs, with Figure 2a the main
system’s vibrations and Figure 2d the relative NES coordi-
nate x− xna . During TET, the energy from the main vibrat-
ing system is transferred to the BNES, where it is dissipated.
The energy transfer is suddenly halted (after the pumping
time) while a small fraction of the vibration energy remains
(the residual energy). This behavior is identical to TET for
a NES without bi-stable property, klin ≥ 0. However, there
are two unique ways the BNES vibrates, called the chaotic
inter-well vibrations and the intra-well vibrations as shown
in [14].

When the initial velocity is lowered to ẋ(0) = 0.05 m
s ,

the BNES vibrates chaotically, Figure 2e. Figure 2b illus-
trates that vibration energy in the main mass reduces much
slower than before. Finally, for the even lower ẋ(0)= 0.01 m

s ,
the BNES is not capable of leaving its well, Figure 2f, as
the BNES does not vibrate around its zero position. Again
the vibration energy in the main system is reduced rather
slowly, Figure 2c. Later on, a tuning methodology for the
BNES will be proposed to ensure it operates in the efficient
TET region and avoids the lower energy chaotic and intra-
well behavior. A glance at the stiffness force F(x) = knav3

, F(x) = klinv + knav3 and potential energy V (x) = kna
v4

4 ,

V (x) = klin
v2

2 +kna
v4

4 of either the purely cubic and bi-stable
stiffness clarifies their similarities and differences, with v =
xna− x, kna = 0.444 N/m3 and klin =−0.006 N/m. For high
relative displacement, Figure 3a and 3c, both the force and
potential energy are almost identical, which explains why
their behavior is also similar (TET) for both klin ≥ 0 and
klin < 0. For smaller relative displacement, both the force

and potential are drastically different. On the force charac-
teristic, Figure 3b, the sign of the force and displacement

of the BNES is different for v ∈ [−
√
−klin
kna

,
√
−klin
kna

]. This re-
flects in the potential in Figure 3d as a negative potential

energy and two minima at v = {−
√
−klin
kna

,
√
−klin
kna
} which

form the so-called wells. Inter-well vibrations are vibrations
around the zero-position while intra-well vibrations happen
in one of the wells around a non-zero equilibria. For these
lower energies, the inter-well chaotic and the intra-well vi-
bration occur only for the BNES.

4 Approximate dynamics and tuning

4.1 Semi-analytic reduction

In this section the nonlinear dynamics of (4) are simplified
by deriving the slow flow dynamics and a slow invariant
manifold (SIM). The result will help us define several al-
gebraic performance measures for targeted energy transfer
obtained. They are called algebraic as these are found with-
out simulation of the dynamic system (1)

Although this paper focusses on the BNES, the calcula-
tions in this section are also valid for κ ≥ 0.
New variables are introduced, u = xl + εxna, the center of
mass of modal/absorber system (4), and v = xl−xna, the rel-
ative absorber movement. Rewriting (4) in these new vari-
ables yields:


ü+ω

2
i u+ ε

(
λ u̇+ω

2
i (v−u)

)
+O(ε2) = 0

ε(v̈+ω
2
i v)+εω

2
i (u− v)+ ελnav̇+ εω

4
i Ω3v3

+εκω
2
i v+O(ε2) = 0

(6)

where a small mass ratio ε� 1 is assumed such that the
terms O(ε2) can be omitted and ε ü≈−εω2

i u.
Variables u and v are assumed to vibrate with a single

mode, 1:1 resonance, so they can be complexified to:{
ϕ(t)e jωit = u̇+ jωiu,ϕ ∈ C
ϕna(t)e jωit = v̇+ jωiv,ϕna ∈ C

(7)

with j =
√
−1 the imaginary unit and with both ϕ(t) and

ϕna(t) modulating the amplitude and phase and e jωit an os-
cillation with frequency ωi in the complex plane. This al-
lows for a change of variables in the complexified variables:


u =

ϕe jωit − ϕ̄e− jωit

2 jωi
v =

ϕnae jωit − ϕ̄nae− jωit

2 jωi

u̇ =
ϕe jωit + ϕ̄e− jωit

2
v̇ =

ϕnae jωit + ϕ̄nae− jωit

2
ü+ω

2
i u = ϕ̇e jωit v̈+ω

2
i v = ϕ̇nae jωit

(8)
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Fig. 2: Numerical simulation for ẋ(0) = 0.1, main system (a) and BNES (d) vibration, and chaotic vibrations for ẋ(0) = 0.05,
main system (b) and BNES (e), and intra-well for ẋ(0) = 0.01, main system (c) and BNES (f)
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Fig. 3: Force characteristic of NES and BNES for low (a)
and high (b) relative displacement and potential energy low
(c) and high (d) relative displacement.

with the bar sign the complex conjugate. The complexi-
fied variables are expanded in a perturbation series:

{
ϕ = ϕ0 + εϕ1 +���ε

2
ϕ2 + · · ·

ϕna = ϕna0 + εϕna1 +���
ε

2
ϕna2 + · · ·

(9)

which expands the variable ϕ (and ϕna) into a sum of
terms with decreasing importance, ε iϕi (ε iϕnai). The pertur-
bation series here is taken up to a first order power ε , while
O(ε2) and higher considered insignificant. This way, both

ϕ and ϕna only consist of a major (O(ε0)), denoted by in-
dex 0 and a minor (O(ε1)) contribution, denoted by index
1. A perturbation series often yields a bad approximation of
the actual dynamics on a long time scale. Therefore, the per-
turbation series is often combined with the two-timing tech-
nique, which assumes that the dynamics act on two separate
and independent time variables (hence two-timing), a fast
T0 = t and a slow T1 = εt time. Although both time scales
are not independent, in two-timing it is assumed they are.
Then, the derivative w.r.t. t is a total derivate up to O(ε):

d
dt

=
∂

∂T0
+ ε

∂

∂T1
(10)

Two-timing will ensure that the reduced dynamics of the
perturbation series approximate the real dynamics on short
and on long term. Applying the complexification, the per-
turbation and two-timing on (6) and neglecting terms O(ε2)

and beyond:

∂ϕ0

∂T0
+ ε

∂ϕ0

∂T1
+ ε

∂ϕ1

∂T0
+ ελ

ϕ0

2
+ ε

ω2
i

2 jωi

(
ϕna0−ϕ0

)
+
(

ελ
ϕ̄0

2
− ε

ω2
i

2 jωi

(
ϕ̄na0− ϕ̄0

))
e−2 jωit = 0

ε(
∂ϕna0

∂T0
)+ ε

ω2
i

2 jωi

(
ϕ0−ϕna0

)
+ ελna

ϕna0

2
+

εκω2
i

2 jωi
ϕna0

+
(
− ε

ω2
i

2 jωi

(
ϕ̄0− ϕ̄na0

)
+ ελna

ϕ̄na0

2
− εκω2

i
2 jωi

ϕ̄na0

)
e−2 jωit

+
εω4

i Ω3

8
(

jωi
)3

3

∑
k=0

(−1)k
(

3
k

)
ϕ

3−k
na ϕ̄

k
nae j(3−2k−1)ωit = 0
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(11)

Both equations of (11) show terms with higher order har-
monics. These terms may result in unbounded solutions and
are referred to as secular terms. We omit all secular terms, a
characteristic manipulation of two-timing [24]:



∂ϕ0

∂T0
+ ε

∂ϕ0

∂T1
+ ε

∂ϕ1

∂T0
+ ελ

ϕ0

2
+ ε

ω2
i

2 jωi

(
ϕna0−ϕ0

)
= 0

ε(
∂ϕna0

∂T0
)+ ε

ω2
i

2 jωi

(
ϕ0−ϕna0

)
+ ελna

ϕna0

2
+

εκω2
i

2 jωi
ϕna0

− ε
jω4

i Ω3

8ω3
i

3|ϕna0|2ϕna0 = 0

(12)

The same result would have been obtained if the averag-
ing technique is performed [1]. The next step in our proce-
dure consists in equating the coefficients of ε0 and ε:



∂ϕ0

∂T0
= 0 ⇒ ϕ0(T1)

∂ϕ0

∂T1
+

∂ϕ1

∂T0
+

λϕ0

2
+

ω2
i ϕna0

2 jωi
− ω2

i ϕ0

2 jωi
= 0

∂ϕna0

∂T0
+

λnaϕna0

2
+

ω2
i ϕ0

2 jωi
− ω2

i (1−κ)ϕna0

2 jωi

− j
3Ω3ω4

i

8ω3
i
|ϕna0|2ϕna0 = 0

(13)

The first equation of (13) states that ϕ0 is constant on a
fast time scale T0, only evolving on the long term (T1) ac-
cording to the other equations. It can be shown [25] that
both ϕna0 and ϕ1 evolve towards a steady state as T0 → ∞;
limT0→∞ ϕna0 = Φna0 and limT0→∞ ϕ1 = Φ1; This way, (13)
can be described in steady state for T0, solely behaving on
the slow time scale T1


∂ϕ0

ωi∂T1
=−ξ ϕ0

2
+

jΦna0

2
− jϕ0

2

0 =− j(1−κ)+ξna

2
Φna0 +

jϕ0

2
+

3 jΩ3

8
(|Φna0|2Φna0)

(14)

with ξ = λ

ωi
and ξna =

λna
ωi

dimensionless damping parame-
ters.

(14) describes the dynamics of only the major contri-
butions of the perturbation series (9) (ϕ0 and ϕna0). These
major contributions are assumed to be representative of the
actual dynamics, which later on will be verified through nu-
merical simulation. The complexified variables are written

in polar notation; ϕ0(T1) = R0(T1)e jδ0(T1) and Φna0(T1) =

Rna(T1)e jδna(T1) with R0, Rna,δ0 and δna ∈R. R0 and Rna are
the amplitude modulating part (the envelope). Then splitting
(14) in real and imaginary parts yields after some calcula-
tions:



1
ωi

∂R0

∂T1
=−ξ R0

2
− sin(δna−δ0)

2
Rna

R0

ωi

∂δ0

∂T1
=−R0

2
+

cos(δna−δ0)

2
Rna

0 =− sin(δ0−δna)

2
R0−

ξna

2
Rna

0 =
cos(δ0−δna)

2
R0−

1−κ

2
Rna +

3Ω3

8
R3

na

(15)

The equation (15) is manipulated as follows. The squared
sum of the third and fourth equation yield a static relation-
ship between R0 and Rna, while a substitution of the third in
the first equation simplifies the slow time dynamic equation:



1
ωi

∂R2
0

∂T1
=−ξ R2

0−ξnaR2
na

R2
0 =

[
ξ

2
na +

(
1−κ− 3Ω3

4
R2

na

)2
]

R2
na

(16)

The energy-like variables E0 = R2
0 ∈ R+ and Ena = R2

na
∈ R+ are introduced along with their dimensionless coun-
terparts Z0 = Ω3E0 and Zna = Ω3Ena. Then (16) becomes:

∂Z0

∂T1
=−λZ0−λnaZna

Z0 =

[
ξ

2
na +

(
1−κ− 3

4
Zna

)2
]

Zna

(17)

(17) represents the slow flow dynamics. The first equa-
tion states that Z0, the dimensionless energy in the center
of mass, always decreases in time. The second equation is a
slow invariant manifold (SIM), which restricts the relation
between Z0 and Zna on the phase plane. The SIM is plotted
for a combination ξna’s and κ’s on Figure 4a and Figure 4b.
Notice that there is a region where 3 solutions of Zna exist
for one Z0. Next, the importance of the SIM in tuning and
performance is discussed and related to these 3 branches.
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4.2 Analysis of SIM

4.2.1 Multiple branches and conditions for TET

The points of interest on the SIM are its extrema:


Zna± =

4
9

(
2(1−κ)±

√
(1−κ)2−3ξ 2

na

)
Z±0 =

[
ξ

2
na +

(
1−κ− 3

4
Zna∓

)2
]

Zna∓
(18)

with {Z+
0 ,Z−na} a local maximum and {Z−0 ,Z+

na} a local min-
imum which exist for

ξna <
1−κ√

3
(19)

Depending on where the dynamics initiate on the SIM,
the ability of the NES in mitigating vibrations differs. On
the right branch, Z0 > Z−0 and Zna > Z+

na, Zna is large mean-
ing that ∂Z0

∂T1
is large and negative as well, (17). This fast

decrease of vibration energy in Z0 is TET. The right branch
is descended until the point {Z+

na,Z
−
0 }, see Figure 4c. At this

point, the SIM can not be ascended as Z0 should always
decrease. The dynamics will then jump to the left branch,
where Zna is small. On this branch ∂Z0

∂T1
is small as well,

with the residual vibration energy Z−0 only gradually de-
creasing. To conclude, the condition for TET, is to initiate
on the right branch of the SIM. The performance can also be
derived from the SIM. The pumping time is the duration of
the descent on the right branch up until the local minimum
{Z+

na,Z
−
0 }. The residual energy is what is left after TET,

namely Z−0 . These two measures are essential for TET per-
formance. It can already be seen on Fig. 4a, increasing the
damping will increase the residual energy, as Z−0 is higher.

4.2.2 Initial conditions and SIM

To ensure that TET is triggered, the SIM and its relation to
initial conditions of v and u of (6) needs to be understood.
As these initial conditions can be chosen arbitrarily, the dy-
namics can initiate anywhere on the ZnaZ0-plane, not neces-
sarily on the SIM. Since the SIM described the dynamics on
the slow time scale, the actual dynamics on the fast time still
need to converge from the initial point to the SIM.
Only impulsive excitation will be investigated, where the
main system is only subjected to an initial speed, ẋ`(0) 6= 0,
x`(0) = ẋna(0) = 0 then u̇ = v̇ = ẋ`(0). For κ < 0, there
is also an initial displacement for the BNES as it rests in
one of the stable positions, u(0) = − ε

ωi

√
−κ

Ω3
and v(0) =

1
ωi

√
−κ

Ω3
. With Z0(0) = Ω3(u̇2

0(0)+ω2
i u0(0)) and Zna(0) =

Ω(v̇2
0(0)+ω2

i v0(0)), an impulsive excitation will initiate on
the Zna−Z0 phase plane on:

– The line through the origin Z0 = Zna for κ ≥ 0
– The line Z0 = Zna +(1− ε)κ for κ < 0

These lines of initial points are drawn together with the SIM
on Fig.4c and Fig.4d for κ = 0 and Fig.4e and Fig.4f for
κ = −0.5. When Z0(0) > Z+

0 on Fig. 4c and Fig. 4e, there
is only one corresponding Zna on the SIM. In this case the
dynamics will converge to the right branch. This condition
for TET has been found in previous works as well, and is
confirmed with numerical simulations of (1) [16–18].
For Z−0 < Z0(0)< Z+

0 , there are three solutions in Zna, on the
suboptimal left branch, on the unstable middle branch [25]
and on the optimal right branch. For κ = 0, the line of initial
points will be very close to the left branch, Fig.4d. There-
fore, the dynamics are very likely attracted to this slow, sub-
optimal branch, confirmed by simulations in [16, 17]. For
κ ≥ 0, Z0(0)> Z+

0 is thus the energy threshold above which
TET is triggered. A NES with κ ≥ 0 can thus be tuned as
follows:

Z0(0)> Z+
0 → kna ≥

mnaω4
i (Z

+
0 )

u̇2(0)+ω2
i u2(0)

(20)

When a BNES is considered, κ < 0, Fig.4f, the branch con-
vergence is more ambiguous. The initial line is now to the
right of the suboptimal branch, and intersects with the un-
stable branch. As the initial points are not close to either of
the stable branches, is it uncertain whether the dynamics are
attracted to the left or right branch for Z−0 < Z0(0) < Z+

0
when κ < 0, visualized by the red dash and blue dotted lines
on Fig.4f. In Section 6 it will be shown that there is an en-
ergy threshold lower than Z+

0 for κ < 0, below which the
BNES vibrates chaotically. The range for TET is thus ex-
tended for the BNES. Numerical simulations of (1) in Sec-
tion 7.1 will confirm this. In Section 3, the simulated system
with BNES has a Z+

0 = 0.4217. For ẋ(0) = 0.1, there is TET
even though Z(0)= 0.2222, confirming that TET is also pos-
sible for Z−0 < Z0(0)< Z+

0 when κ < 0.
Essential for tuning and performance is the knowledge of
Z0(0). It can be difficult to obtain with certainty the initial
conditions from impact loaded systems. If a range of initial
energies is available, [Z0,min(0),Z0,max(0)], only Z0,min(0) needs
to be considered in tuning to ensure TET for the whole en-
ergy range. In practical applications, initials speeds can be
derived from the intensity of impact or shock forces.

5 Performance measures

The performance of the NES in mitigating transient vibra-
tions is either expressed in the amount of energy dissipa-
tion during TET (and the complementary residual energy) or
speed or decay of this dissipation. The latter is often over-
looked and the NES performance is only expressed in the
energy dissipation, calculated from numerical simulations.
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Fig. 4: The SIM for κ = 0 and ξna = [0,0.1,0.2] (a), κ =

[0,−0.1,−0.2] and ξna = 0.1 (b). Attraction to right branch
for κ = 0 and ξna = 0.1 (c) and κ = −0.5 and ξna = 0.1
(d), with black-dotted line of possible starting points, blue
square dot the starting point and red the dynamics in slow
flow. Reducing the initial energy causes attraction to the left
branch for κ = 0 and ξna = 0.1 by reducing initial energy
(e) but κ =−0.5 it is unclear which branch is taken (f).

Extensive numerical simulations are thus required to gain
insight and optimize performance. The performance mea-
sures introduced in this section do not require simulations to
calculate, but only the parameters of the mechanical system
and NES. To introduce the concept of the performance mea-
sures proposed in this paper, the slow flow dynamics (17)
are numerically integrated for ξna = 0.1 and κ = 0. Once
for Z0(0) = 0.22 and starting on the right branch, similar to
Fig 4c, and once for Z0(0) = 0.2 starting on the left branch,
similar to Fig 4d. The corresponding time evolution of Z0
and Zna in slow time are shown on Fig. 5. For Z0(0) = 0.22,
Z0 (red) decreases swiftly until the slope suddenly changes.
The corresponding Zna (red) has a high value and decreases
slowly until it jumps to a very low value, at the same time
the slope of Z0 changes. The time of efficient energy transfer
is called pumping time. After the slope change of Z0, there is
some residual energy left (Z−0 ). For Z(0) = 0.20, Z0 (black)
decreases at sluggish pace while Zna has a very low value.
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Right Branch
Left Branch

(a)
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1

1.5

2
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Fig. 5: Slow flow dynamics time evolution for κ = 0 and
ξna = 0.1 with Z0(0) = 0.22(red) and Z0(0) = 0.2 (black) .

It is now the goal of this section to determine the pumping
time and residual energy based on static formulas, instead of
numerical simulations of (17). These are the algebraic per-
formance measures, called like this to stress no differential
equation needs to be solved to obtain the pumping time and
residual energy.
The decay of Z0 of Figure 4c is more linear rather than expo-
nential, the latter typical in linear systems. This is because
during TET, Zna is nearly constant, such that according to
the first equation of (17) the decrease of Z0 is nearly con-
stant. However, in some works [10, 11] the exponential de-
cay e−ζ ωi was incorrectly fitted on simulations where ζ is
then a measure for TET speed.
For this algebraic performance to match the actual perfor-
mance, the slow flow dynamics should be representative of
the actual dynamics, which will be verified in Section 7.1.

5.1 Residual Energy and Energy dissipation

If the slow dynamics initiate on the right branch of the SIM,
TET persist until the local minimum of the SIM, Figure 4c.
The residual energy relative to the initial energy is then:

Eres =
Z−0

Z0(0)
=

E−0
E0(0)

(21)

with its complement the fraction of the initial energy dissi-
pated by the NES during TET:

ET ET = 1−
Z−0

Z0(0)
= 1−

E−0
E0(0)

(22)

and is dubbed the energy dissipation [17]. These measures
can also be expressed in amplitude:

Ares =

√
Z−0√

Z0(0)
AT ET = 1−

√
Z−0√

Z0(0)
(23)

As Z0(0) = Ω3(u̇(0)2 +ω2
i u2(0)) and Z−0 is (18), both

(21) and (22) can be calculated without any numerical in-
tegration of (17). In literature, the fraction of the initial en-
ergy dissipated by the NES is the most common way to ex-
press the NES performance. Now it is expressed in a simple
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formula (22) instead of determined from numerical simula-
tions.

5.2 Pumping time of undamped main system

From (17), the derivate of Zna w.r.t. T1 is:

1
ωi

∂Zna

∂T1
=

−ξnaZna−ξ Z0
27
32 Z2

na−3(1−κ)Zna +(1−κ)2 +ξ 2
na

(24)

If there is no damping in the main system, ξ = 0, sepa-
ration of variables Zna and T1 is possible, which after inte-
gration results in:

I(Zna)︷ ︸︸ ︷
27
16

Z2
na−3Zna(1−κ)+

(
(1−κ)2 +ξ

2
na

)
ln(Zna)

=C−ωiξnaT1

(25)

From this relation, the slow time in T1 between two states
of Zna can be calculated. When the dynamics initiate on the
right branch of the SIM, the SIM will be descended from
Zna(0) until Z+

na. The duration of TET, called pumping time,
is then:

εTpmp =
1

2πξna

(
I(Zna(0))− I(Z+

na)
)

(26)

with Tpmp relative to the period of the modal frequency, with
Tpmp

ωi
2π

the time in seconds.
Z+

na is calculated from (18). But the value for Zna(0) is
ambiguous. As the pumping time is calculated from the slow
flow dynamics and SIM (17), it is implicitly assumed that
Z0 and Zna are always on the SIM, even though the fast dy-
namics initiate on a line and not on the SIM.. To calculate
Tpump, the solution on the right branch of Zna corresponding
to Z0(0) will be chosen, as visualized with the red diamond
on Fig. 6a and Fig. 6b. With Z+

na and Zna(0) available, the
pumping time (26) can be calculated without numerical in-
tegration of (17) or (1).

5.3 Pumping time damped main system

By allowing main system damping, ξ 6= 0, no separation of
variables is possible in (24). Integrating both sides yields:(
−ξna−ξ ξ

2
na−ξ (1−κ)2)T1ωi

−ξ ωi

∫ T1

0

(
9

16
Z2

na− (1−κ)
3
2

Zna

)
∂T1 = I(Zna)+C

(27)

with C the constant of integration and I(Zna) (25). The
slow time T1 between the two states Zna,1 and Zna,2 on the
SIM is

(
−ξna−ξ ξ

2
na−ξ (1−κ)2)T1ωi

−ξ ωi

∫ T1

0

(
9
16

Z2
na− (1−κ)

3
2

Zna

)
∂T1

= I(Zna,1)− I(Zna,2)

(28)

The integral on the left-side equation is solvable if either the
explicit function Zna(T1) is found, or a constant Zna is as-
sumed. Here it is opted for the latter as in [18] it was shown
in simulations that Zna is nearly constant during TET. This
constant Zna, Zna(t) = Zna,c, is only assumed for the left side
of equation (28) to solve the integral. Finally, the time be-
tween the two energy states, now chosen as Zna(0) and Z+

na,
is:

(
−ξna−ξ ξ

2
na−ξ (1−κ)2 +ξ

(
9

16
Z2

na,c− (1−κ)
3
2

Zna,c

))
·Tpump2π = I(Zna(0))− I(Z+

na)

(29)

from which the pumping time Tpump follows. Here, a Zna,c is
estimated as the average function value of Zna of the equiv-
alent system with no modal damping:

Zna,c =
2π

ωiTpmp,ξ=0

∫
ωiTpmp,ξ=0/2π

0
Zna(t)dt (30)

In [18] the value of Zna,c was determined by simulat-
ing the undamped slow flow dynamics and numerically cal-
culating (30). Since this breaks the paradigm of expressing
performance analytically without simulation, Zna,c is analyt-
ically determined here.

When ξ = 0, then (24) can be written as

1
ωiξna

(
27
32

Z2
na−3(1−κ)Zna +(1−κ)2 +ξ

2
na

)
∂Zna

=−Zna∂T1

(31)
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Fig. 6: Two SIMs, with one possible solution on the SIM,
shown as a red diamond (a), and with three (b). To calculate
the pumping time, the most right branch is chosen both times
as the initial point on the SIM.

The integrated variable in (30) is changed to T1, and together
with (31):

Zna,c =
1

T1,p

∫ T1

0
Zna(T1,p)dT1

=
1

ωiξnaT1,p
·
∫ Zna(0)

Z+
na

(
27
32

Z2
na−3(1−κ)Zna

+(1−κ)2 +ξ
2
na

)
dZna

=
1

ωiξnaT1,p
·

[
27
96

Z3
na−

3
2
(1−κ)Z2

na+

(
(1−κ)2 +ξ

2
na
)

Zna

]Zna(0)

Z+
na

(32)

with T1,p =
εTpump2π

ωi
the pumping time of the undamped main

system expressed in the slow time scale T1. With an expres-
sion for the average Zna during TET in an undamped main
system, (32), the pumping time for the equivalent system,
yet with a damped main system, can be found with (29).

6 The chaotic threshold

6.1 Further reduced system

During chaotic inter-well vibrations, the BNES only has a
marginal influence on the vibrations of the main system,
as Figure 2b and Figure 2e illustrate. The main system’s
free vibrations closely resemble the free vibration without
BNES, safe for a slow decay. The effect of the main system
on the BNES can then be replaced by a ground excitation
on the BNES. The ground excitation is the free vibration
of the main system without NES. This technique has been
used in [26] to numerically determine the energy threshold
for TET for a NES with κ = 0, and was also used in [14]

to quantify chaotic vibrations of the BNES. Here, it will be
used further on to tune the BNES. We retake (4) and assume
an undamped main system:

ẍ`+ω
2
i x`+ ε ẍna = 0

ε ẍna + ελna(ẋna− ẋ`)+ εΩ3ω
4
i (xna− x`)3

+ εκω
2
i (xna− x`) = 0

(33)

The first equation is solved under the assumption ε ẍna ≈
0, valid if there is little interaction between the BNES and
main system, which is the case during chaos. The solution
for x` is then x` = x`(0)cos(ωit)+

ẋ`(0)
ωi

sin(ωit). Reintroduc-
ing the relative absorber coordinate v to (33)yields:

v̈+λnav̇+Ω3ω
4
i v3 +κω

2
i v =−Xsin(ωit +θ) (34)

with

X =
√

ω4
i x`(0)2 +ω2

i ẋ`(0)2 θ = arctan
(

ωix`(0)
ẋ`(0)

)
By introducing the dimensionless time τ = ωit and coordi-

nate vd =
vω2

i
X , (34) becomes:

v′′d +ξnav′+Ω3
(
ω

2
i x`(0)2 + ẋ`(0)2)v3

d +κvd =−sin(τ +θ)

(35)

with ′ the derivative w.r.t. τ . (35) reveals a forced Duff-
ing oscillator which is known for its chaotic properties [27–
29]. Although a Duffing oscillator can be analytically solved
for some cases, namely the border between intra-well and
chaos, there are no analytic techniques to find the threshold
between chaotic regime and interwell vibrations. In the past
numerical algorithms have been used to determine the so-
called Lyapunov exponent of the Duffing oscillator, which is
a measure of chaos [14, 28, 29]. Equation (35) reveals that
the class of systems with equal κ , Ω3 and ξna and where the
main system is impulsively excited, x`(0) = 0, ẋ`(0) 6= 0,
have the same dynamic behavior. The mass ratio ε also has
no influence on (34).

6.2 Lyapunov exponent

The Lyapunov exponent (LE) is a quantifying measure for
chaos in a dynamical system. It is the average exponential
rate of divergence or decay of orbits initiating in nearby
states [24]. For stable dissipative nonlinear systems, nearby
states will either decay into a fixed point or limit cycle (non
chaotic) or diverge into seemingly random and unpredictable
dynamics (chaotic). For nonlinear ODEs, the LE is defined
as the average exponential growth/decay of infinitesimal close
states

λLE = lim
d(0)→0,t→∞

1
t

ln
(

d(t)
d(0)

)
(36)
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with d(t) the distance in phase space between a given
orbit and a test orbit, initially starting infinitesimally close
with initial distance d(0). The LE depends on the chosen
initial states and besides a few toy examples, are difficult
to determine analytically. However, with the ODE given,
the LE is numerically determined from (34) with the algo-
rithm described in Wolf [30] with a Matlab implementation
found on [31]. A first practical problem in calculating the
LE is choosing the infinitesimally close states. In [30], an
infinitesimal sphere is defined around the initial point with
principle axis for each dimension of length pi(0). As time
goes by this sphere stretches/contracts to an ellipsoid and its
principle axis change length to pi(t). The change in length
of these axis are then used to calculate the LE in (36). As nu-
merically, infinitesimal distances are not possible, the algo-
rithm of Wolf resort to the variational dynamics of the non-
linear system, approximated with the Jacobian, by definition
describing the dynamics infinitely close to an initial condi-
tion. Another problem with (36) is that it requires an infinite
time horizon. Therefore, the nonlinear dynamics are simu-
lated for a time τ starting from an initial condition x(0) re-
sulting in x(τ), while the variational dynamics are simulated
for orthonormal unit vectors e[1]i (a variation in each dimen-
sion on x(0)) that are transformed by the Jacobian into v[1]i .
The average exponential growth in the i-th dimension during
τ is 1

τ
ln(||v[1]i ||). The resulting v[1]i ’s are re-orthonormalized

to e[2]i in x(τ) with the Grahm-Smidth orthonormalization to
prevent numerical errors because of exponential growth and
decay, and to prevent that all vectors align according to the
dominant eigenvalue. The nonlinear and variational dynam-
ics are then simulated again over τ starting from x(τ) and
e[2]i resulting in x(2τ) and v[2]i . This process is repeated k
times from which the LE can be calculated as:

λLE =
1
kτ

k

∑
i=1

ln||v[i]i || (37)

The choice of τ is not critical, but should by sufficiently
small to prevent numerical errors if vi decays or grows to
fast, or their direction become indistinguishable because of
dominant eigenvalues of the Jacobian. Often it is chosen as
the expected period in the phase plane, here τ = 2π

ωi
, the

same period as the forcing term. Wolf’s algorithm has been
applied to the forced Duffing oscillator in [28] and was ap-
plied to a BNES in [14] to indicate its chaotic behavior. As
the forced Duffing oscillator has two states and is linearly
damped, it will have two negative LE for non-chaotic re-
sponse and a positive and negative for chaotic response [30].
Further on, only the maximum LE will be considered, as this
indicates chaos. No LE is calculated from the full dynamics
(1) as the vibrations eventually decay even if the BNES ini-
tially vibrates chaotically and so will always yields negative

LE, stressing the need of the reduced 1DOF system. Further-
more, as not only the nonlinear system has to be calculated
but also the variational dynamics, increasing the dimensions
of the nonlinear system increases calculation time exponen-
tially.

In [14], the forced Duffing oscillator is only used to pre-
dict chaotic behavior of the full system. Here, this prediction
will be used to tune the BNES.

6.3 Numerical example of Lyapunov exponent

For the system in Section 3, the LE for initial speed ẋ(0)
ranging from 0 to 0.1 m/s is numerically calculated for k =

1000 and τ = 2π in (37) and plotted on Figure 7 along with
the absolute value of the average v, the relative absorber co-
ordinate. |vmean| indicates whether the BNES vibrates inter
or intra-well, being (approximately) zero for TET and chaos

and has the value of
√
−klin
kna = 0.116 for intra well vibra-

tions. The system has a Z+
0 = 0.4217 while for ẋ(0) = 0.1

Z(0) = 0.2222. However, the threshold above which effi-
cient TET ensues and below which there is a suboptimal
chaotic response, is even lower. There is no chaos until ẋ(0)=
0.055 m/s, as the LE < 0. Between ẋ(0) = 0.055 and ẋ(0) =
0.02 m/s there is chaos. The chaotic behavior halts below
ẋ(0) = 0.02 m/s, where the |vmean|= 0.116 indicates that the
BNES vibrates intra-well. The dynamics (34) for ẋ(0) = 0.1
m/s, ẋ(0) = 0.05 m/s and ẋ(0) = 0.01 m/s are plotted on a
two-dimensional phase plane, Figure 8. The two fixed points
are indicated by the red *, and the separatrix of the Hamil-
tonion system is shown as red dash. It is called a separatrix
as it separates distinct behaviors for the undamped and un-
forced system. When the dynamics start inside, it is confined
within one of the lobes or wells and when started outside the
trajectory orbits around the separatrix. The introduction of
the forcing and damping introduces a third, chaotic behav-
ior. These phase planes of the reduced system clearly visual-
izes the chaotic inter-well and intra-well oscillations, Figure
8b and Figure 8c

7 Chaos performance validation

7.1 Design

A NES and three BNES will be tuned for a damped SDOF
mechanical system with m = 1 kg, k = 1 N/m, c = 0.002
Ns/m and displacement x, which suffers from an impulsive
load equivalent to ẋ(0) = 0.1 m/s. The attached BNES has
mna = 0.02 kg and cna = 0.002 Ns/m (ξna = 0.1). The NES
mass is chosen such that a small mass ratio is ensured, ε =

0.02. The choice of parameters also allows comparison to
the single-mode simulation in [18, 32]. For κ = 0, the NES
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Fig. 8: The phase plane obtained from simulating the re-
duced Duffing oscillator (34), if there is TET (a), chaos (b)
and intra-well vibrations (c).

is tuned with (20) yielding kna = 0.444 N/m3 (Ω3 = 22.2).
The BNES will not be tuned with (20), it will rather be tuned
to avoid chaos by applying the novel tuning methodology. A
chaos-performance graph is constructed for ξna = 0.1 for a
range of Ω3 = [0,50] and κ = [0,−2] and shown on Fig.
9. The blue areas indicate a positive LE, or chaos, and the
thick black line is a separator between inter-well and intra-
well oscillations. Both are determined from numerical sim-
ulation of (34). Chaotic response seem to be independent of
κ but rather dependent on how nonlinear (Ω3) the BNES is.
Then the algebraic performance is calculated with (29) and
(22). The shades of pink represent the Tpump in s while the
thin black line is a contour of constant ET ET . By choosing
a κ and Ω3 that avoids chaos and is in the inter-well region,
a BNES is effectively tuned with an estimation of its per-

Fig. 9: For the given main system, ξna = 0.1 and ẋ0 = 0.1,
positive LE exponent, (blue), indicating chaos, Tpump in
shades of pink and ET ET as the thin black contour lines and
white text. The thick black line separates inter and intra-well
vibrations. Based on this graph, 4 NESs are tuned.

formance. The tuning methodology is not restricted to the
choice of parameters made here. Therefore, at the end of
this section, similar contour plots as Figure 9 are made for
other choice of BNES damping and initial conditions.
Three BNESs will be simulated and compared to the NES
with κ = 0, the choice of parameters corresponding with
the stars on Figure 9. The pumping time and energy dissi-
pation for the 4 NESs can be found on Table 1. Although
4 NESs are tuned assuming a fixed initial vibration energy,
ẋ(0) = 0.1 m/s, the initial energy will also be varied in the
simulation to highlight the vastly different behavior of the
NES for κ ≥ 0 and κ < 0 and to showcase the BNES supe-
riority in all cases.

ET ET Z+
0 Tpmp Tpmp,sim % err

1)Ω3 = 22 κ = 0.0 0.202 0.94 60.2 68.0 11.4
2)Ω3 = 22 κ =−0.5 0.673 0.91 44.7 47.7 6.3
3)Ω3 = 22 κ =−1.0 1.589 0.90 35.6 34.1 -4.4
4)Ω3 = 13 κ =−0.5 0.673 0.86 27.1 23.2 -16.8

Table 1: Performance of the NESs tuned for an SDOF sys-
tem

7.2 Mid energy simulation

NES 1, 2 and 3 on Table 1 were tuned for the initial con-
dition of ẋ(0) = 0.1 m

s . This initial speed is applied here.
All three NESs have a Z0(0)≈ 0.22, which is above Z+

0 for
NES 1, required to engage TET for κ ≥ 0. For NES 2 and 3
Z0(0) < Z+

0 yet TET is still triggered, as expected from the
relation between SIM and the initial line in Section 4.2.
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The vibrations in the main system and absorber are re-
spectively shown on Figure 10a and 10b. All three NESs
engage in TET, as all three NESs vibrate with high ampli-
tude. The duration of the TET, estimated beforehand with
the pumping time on Table 1, is seen in the simulation as
roughly the time the vibration in the main system stop mit-
igating at a fast rate. The NES with κ = 0 is the slowest,
while the two BNES are significantly faster. After TET, a
residual amount of vibration energy remains. The amount
of energy dissipation is also estimated and revealed that the
BNES with κ = −1.0 has the most residual energy which
is confirmed by simulations. For κ = −0.5, the BNES is
able to dissipate the residual energy quickly as it acts as a
TMD when the NES is vibrating intra-well. To highlight that
the previously derived slow flow dynamics are representa-
tive of the actual dynamics, the envelope of the simulation
is calculated as E0,sim(t) = u̇2(t)+ω2

i u(t) and Ena,sim(t) =
v̇2(t)+ω2

i v(t) and compared to the simulation of the slow
flow (17) on Figure 10c for E0 and Figure 10d for Ena. The
pumping time is seen in the slow flow dynamics as either
the time when the slope changes for E0 or the sudden jump
in Ena. For E0, the real dynamics follow the slow flow on
average. There is less resemblance for Ena, as the real dy-
namics first need converge to the SIM, followed by a sudden
jump, not immediately followed by the actual NES. Rather
a smooth transition is made in the real dynamics, as the NES
has an inertia.
The time for the actual energy envelope E0,sim(t)) to decay
to the residual energy level Eres = 1−ET ET is referred to
pumping time of the actual simulation Tpmp,sim and is com-
pared to Tpmp on Table 1. A good correspondence is found.
For κ = 0, Tpmp is an underestimation for the actual dissipa-
tion time while for the BNES it is more of an overestimation.
On the phase plane of Z0 and Zna the evolution of the slow
flow, the envelope of the real dynamics are shown together
with the SIMS on Figure 10e, 10f and 10g. While the slow
dynamics initiate on the SIM, the actual dynamics do not
and are attracted to the right branch of the SIM. Then the
dynamics descend along the SIM until the local minimum,
after which a jumps occurs.
The actual dynamics for κ = 0 is initially above the maxi-
mum of the SIM Z0(0) > Z+

0 , Figure 10e. For the BNESs,
Z0(0)< Z+

0 , yet still the actual dynamics are attracted to the
right branch of the SIM. This is not possible when κ ≥ 0
if impulsive loading is considered, as discussed in section
4.2. Next, the initial vibration energy is lowered, such that
Z0(0)< Z+

0 also for the NES with κ = 0.

7.3 Lower initial energy simulation

By lowering the initial speed to ẋ(0) = 0.07 m/s, the vibra-
tion mitigating behavior completely changes for all three
NESs, Figure 11a and Figure 11b. For κ = 0, Z0(0) < Z+

0

which causes the dynamics to converge to the left branch
of the SIM, Figure 11c. This confirms the condition that
Z0(0)> Z+

0 for kappa≥ 0. Both BNESs vibrate chaotically,
yet are able to dissipate the vibrations faster than NES # 1.
When the NES vibrates chaotically, the fast dynamics are
not confined to the SIM Figure 11d and Figure 11e, as the
slow flow dynamics are not representative for chaotic vibra-
tions.

7.4 Extremely Low initial energy simulation

By again lowering the initial speed now to ẋ(0) = 0.02 m/s,
the behavior of only the BNES changes, Figure 12a and Fig-
ure 12b. The NES with κ = 0 still is vibrating suboptimally
on the left branch of the SIM, Figure 12c. The SIM and slow
flow dynamics are thus sufficient to describe this NES’s be-
havior. The BNESs vibrate intra-well. While this also results
in a slow energy dissipation for the BNES with κ =−1, the
BNES with κ = −0.5 is able to exponentially damp the vi-
brations because of its TMD feature during intra-well vibra-
tions.

7.5 Influence of damping and initial energy on chaos &
performance

To stress that the numerical calculation of the LE and the
performance measures are of general purpose, the chaos-
performance graph of Fig 9 is reconstructed for different
BNES damping and different initial conditions. The pump-
ing time is inversely proportional to the BNES damping ξna
in the undamped main system case (26) and approximately
in the damped main system case (29). To assess the influence
on the chaotic response, the LE is numerically calculated
and overlayed with the energy dissipation and pumping time
for ξna = 0.05 on Figure 13a and for ξna = 0.2 on Figure
13b, respectively half and double the damping of the BNES
in the previous section. The area of chaos increases as the
damping increases. While the damping seems more or less
inversely proportional to the pumping time, just increasing
the damping to expedite the TET is not recommended as the
area of chaos increases and the energy dissipation severely
decreases.
If the initial speed is decreased, the area of chaos increases,
see Figure 13c for ˙x(0) = 0.05 while the pumping time de-
creases. This was already observed in the numerical sim-
ulation in Section 3. The decrease of initial energy means
smaller part of the SIM needs to be descended, making TET
shorter but also making chaos and intra-well oscillations ap-
pear sooner. By increasing the initial vibration energy, see
Figure 13c for ˙x(0) = 0.15, the area of chaos severely de-
creases, while the pumping time increases.
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Fig. 10: Numerical simulation for ẋ(0) = 0.1, main system (a) and NES (b) vibration. Slow flow simulations vs actual
dynamics (c) and (d). Phase plane of Zna and Z0 with SIM, slow flow simulations and fast energies for NES # 1 (e), BNES #
2 (f) and more faster BNES # 3 (g)

The influence of mass ratio ε and assumed vibration
mode ωi on chaos is not assessed here as these do not influ-
ence the reduced duffings oscillator (4), that is for the same
range of Ω3, κ and assuming impulsive excitation. The fre-
quency ωi does however affect the physical parameters kna,
cna and klin for constant Ω3, κ and ξna. Both ε and ωi are in-
versely proportional to the pumping time, (26) and (29) and
do not affect the residual energy.

8 Robustness of BNES compared to TMD

In this section the performance and robustness of the BNES
will be compared to the TMD. The TMD will be tuned by
poleplacement such that its vibrations are critically damped,
the fastest possible exponential decay. Let ma be the TMD

mass, ka the TMD stiffness and ca the TMD damping. The
response to impulsive load is critically damped if:

ka

maω2
i
=

1
(1+ ε)2

ca

2
√

maka
=

√
ε

1+ ε
(38)

For ωi = 1 and ε = 0.02 and the same main system as in Sec-
tion 7.1, the optimal TMD parameters are ka = 0.0192 and
ca = 0.0055. Observe the damping is almost triple than pro-
posed for the BNES in Section 7.1. From the chaos-performance
graph, Figure 9, an optimal BNES can be designed, indi-
cated by 4 on the surface. κ is chosen as−0.5 to swiftly dis-
sipate the residual energy after TET. Ω3 is chosen as 13.3,
still outside of the chaotic region. Although the pumping
time is about 27 s, Table 1, the residual energy is high. But
as κ = −0.5 the residual energy will be dissipated expo-
nentially during intra-well vibrations. Comparing TMD and
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Fig. 11: Numerical simulation for ẋ(0) = 0.07, main system (a) and NES (b) vibration. Phase plane of Zna and Z0 with SIM,
slow flow simulations and fast energies for NES # 1 (e), BNES # 2 (f) and more faster BNES # 3 (g)

NES performance is not trivial, as there is no residual en-
ergy for a TMD. For the TMD the b% settling time Tset,b%
is used to express the speed of dissipation. This is the time
for the TMD to decay the vibrations of the main system to
b% of the initial amplitude. Tset,b% is calculated with the
eigenvalues of the compound linear system. Here, b% is
chosen as Ares%, that is the fractional residual amplitude of
the BNES in %, calculated with (23). Tset,Ares% is then the
time for the TMD to reduce the vibrations to the same level
of residual amplitude of the BNES. For ET ET = 0.86, Table
1 Ares = 0.37 and for the TMD Tset,37% = 28.8. The per-
formance of the TMD and BNES seems quite similar. Both
the BNES and TMD are simulated for ẋ(0) = 0.1 m

s with
the main system’s vibration and BNES/TMD vibration on
respectively Figure 14a and 14b. Initially, the BNES dis-
sipates at a faster rate than the TMD. However, after the
pumping time, the BNES performance deteriorates while the
TMD ensures an optimal exponential decay at all times. A
BNES, and NESs in general, are however better equipped
against detuning. The same BNES and TMD are simulated
again, but now the main system’s frequency is decreased to
ωi = 0.75, Figure 14c and Figure 14d. The BNES is about
two times slower than if ωi = 1 but the TMD performance is
just abysmal. In [33], a robust tuning procedure for a TMD
was proposed for uncertain main system under harmonic
forcing but is applied here for transient vibrations. It min-
imizes the worst case response in a given uncertainty range

of the natural frequency ωi. Given a range of ωi ∈ [0.75,1],
the robust TMD has a stiffness ka = 0.0126 and almost dou-
bled ca = 0.0089. It is then not optimal for ωi = 1 in the
poleplacement sense as the vibration then decay supercrit-
ically but its performance suffers less from detuning. The
’optimal’ TMD, the robust TMD and the BNES are now
compared for a range ωi ∈ [0.65,1]. For this range, ET ET
and Tpmp are calculated for the BNES and the correspond-
ing Tset,Ares% is determined for both TMD’s. The BNES en-
ergy dissipation does increase, Figure 14e, at the cost of in-
creased pumping time, 64 s for ωi = 0.75 and even 95 s for
ωi = 0.65, Figure 14f. The optimal TMD’s performance de-
grade significantly more with Tset going from 28.8 s to 315
s for ωi = 0.75 and even to 902 s for ωi = 0.65. The ro-
bust TMD, suboptimal for ωi = 1 with Tset = 72.35 s even-
tually performs better for increased detuning then the opti-
mal TMD, only increasing to 98 s for ωi = 0.75. Outside
the assumed range the performance deteriorates to 216 s for
ωi = 0.65. At the central frequency in the range [0.75,1],
ωi = 0.875, the robust TMD is actually optimal at Tset = 68
s, with the corresponding pumping time of the BNES at 41
s. In conclusion, a BNES is more robust against a uncer-
tain mechanical system than both the optimal TMD and a
robustly designed TMD.
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Fig. 12: Numerical simulation for ẋ(0) = 0.02, main system (a) and NES (b) vibration and SIMs (c-e)

NES Tpmp,ωi=1
ωi
2π

[s] Tpmp,ωi=0.75
ωi
2π

[s] Tpmp,ωi=0.65
ωi
2π

[s]
4 27.1 64.45 95

TMD Tset,ωi=1 [s] Tset,ωi=0.75 [s] Tset,ωi=0.65 [s]
1 28.8 315 902
2 72.35 98 216

Table 2: Performance of the NESs tuned for an SDOF sys-
tem

9 Conclusion

This research presented a complete study of tuning and per-
formance of a bi-stable NES in damping transient single-
mode vibrations. While there were quite some similarities
found between a bi-stable NES (BNES) and a non bi-stable
NES for high and mid energy level vibrations, as for both
the performant targeted energy transfer (TET) occurs, their
behavior completely diverges for the lower energy levels.
Below some initial energy threshold value, the BNES vi-
brates chaotically and for even lower vibration energy the
BNES vibrates intra-well, closely to one of its stable equi-
librium points. For both operations the mitigation of vibra-
tions was poorly. As the most performant vibration mitiga-
tion happens during TET, a numerical method was designed
in this study to find the threshold between chaotic vibra-
tion and TET. By simplifying the compound system of me-
chanical system and NES to a forced Duffing oscillator, the
Lyapunov exponent (LE) was numerically calculated from
this Duffing oscillator. The BNES should be tuned such that

the LE of the equivalent Duffing oscillator indicated non-
chaotic behavior. By avoiding this chaos, a BNES could be
tuned that was superior both to other NESs and tuned-mass-
dampers (TMD). The performance of the BNES is assessed
with the algebraic performance measures pumping time and
energy dissipation or residual energy. These allow the per-
formance to be estimated without simulations. The pumping
time estimates how long TET takes while the energy dissi-
pation estimates how much of the initial vibration energy is
dissipated during TET, with the remaining residual energy
damped very slowly. Both measures predicted a superior
performing BNES, which was confirmed in actual numerical
simulation. A BNES does however lead to increased residual
vibrations after TET. The negative linear part of the BNES
could be chosen such that the BNES acts as a TMD during
intra-well vibration. This way, a BNES is able to dissipate
vibrations quickly both during TET, and the residual energy
after TET during intra-well vibrations. This is not possi-
ble for other NESs, where increased pumping time always
leads to more residual vibrations. The influence of the BNES
damping and initial vibration energy on both chaotic behav-
ior and performance was determined. While an increase in
damping did hasten the pumping time, sub-optimal chaotic
vibrations occured for a much wider range of NES param-
eters. The same holds for a decrease in the initial vibration
energy. In both cases the residual vibration energy also in-
creased. As with other NESs, there is a trade-off in speed
and the amount of energy dissipated, and additionally for
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(c) (d)

Fig. 13: The influence of damping on chaos and performance of the BNES, (a) for ξna = 0.05 and (b) ξna = 0.2, and influence
of the initial energy, ẋ(0) = 0.05 (c) and ẋ(0) = 0.15 (d) with ξna = 0.1

the BNES, a greater chance of chaos. The performance of
the BNES for an uncertain main system was compared to
the TMD. The BNES was found to be far more robust, even
when considering a robust TMD design.
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