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Abstract: In response to limitations in vibration suppression performance of traditional 

linear tuned mass damper (TMD) due to energy threshold constraints and narrow 

vibration bands, this study proposes a magnetic tri-stable NES (MTNES) formed by 

combining a linear spring and magnets. Compared to the conventional nonlinear energy 

sink (NES), the magnetic tri-stable NES (MTNES) incorporates magnetism to enhance 

the nonlinear stiffness. Firstly, the mechanism of the MTNES is  introduced in this 

study, which reveals the existence of the three stable points in the system. Subsequently, 

the equations of motion of the coupled system with MTNES attached to the cantilever 

beam are derived, and the optimal parameter combination for MTNES is determined 

using a global optimization method. Furthermore, the influence of MTNES parameter 

variations on vibration suppression efficiency is studied through parameter analysis. 

Then, the restoring force of the MTNES is simplified into polynomial form, and the 

system response is analyzed using the harmonic balance method and Runge-Kutta 

method. Finally, experimental studies on the coupled system are conducted. The results 

indicate that MTNES can effectively suppress the resonance of the host structure within 

a wide frequency band, with the highest vibration suppression rate of up to 66% under 

strong modulated response. Additionally, the results of numerical calculations and 

theoretical analysis are in good agreement with that of the experiment. 

Keywords: Magnetic tri-stable nonlinear energy sink; Cantilever beam; Vibration 

control; Harmonic balance method; Runge-Kutta method; Experimental validation. 
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1. Introduction 

Vibration control is a critical area of study within engineering, particularly in 

relation to beam or rod structures. The tuned mass damper (TMD), functioning as a 

passive device to mitigate the host structures' vibrations, has found extensive 

application in vibration control within various engineering contexts [1, 2]. The TMD 

primarily mitigates the resonance frequency vibrations of the host structure. However, 

as the dynamic properties of the host structure change, the damping effectiveness of the 

TMD diminishes [3, 4]. A new device called the nonlinear energy sink (NES) has been 

introduced to enhance the broadband vibration absorption capabilities of damping 

devices. The nonlinearity in the NES is achieved through the incorporation of nonlinear 

stiffness, nonlinear damping, or inertial mass. Furthermore, it achieves excellent 

damping performance regardless of large amplitude transient vibration, harmonic 

excitation, or seismic load [5, 6]. 

In the past two decades, many types of NESs were proposed. Conventionally, the 

cubic NES (CNES) with cubic hardening nonlinear stiffness is the most widely studied 

NES. The dynamics of host system and NES are studied based on averaging method of 

complex variables and the multiple time-scale method, establishing the analytical 

solution of the strong nonlinear vibration of the CNES. The 1:1 internal resonance, 

super-harmonic, and sub-harmonic internal resonance behavior of its transient non-

stationary response have been analyzed. Compared with the TMD, CNES has a 

broadband vibration absorption performance in terms of frequency [7-11]. However, 

one drawback is the limited energy dissipation range of the NES. To alleviate this issue, 

a bistable NES (BNES) can be used. Utilizing the strong nonlinear geometry of the 

springs, the BNES produces a continuous smooth alternation of nonlinear positive 

stiffness and negative stiffness during the response process resulting in two stable 

resting positions and one unstable one. Experimental and analytical results show that 

BNES has a wider energy dissipation range and an even wider vibration reduction 

frequency band than CNES [12-24]. The track NES is a novel energy-absorbing 

oscillator where the nonlinear restoring force is provided by using a nonlinear track for 
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the oscillator motion.  

Theoretical studies and experimental results indicate that as the stiffness of the 

host structure degrades, the TMD becomes detuned. Conversely, the track NES exhibits 

superior robustness in control performance compared to the TMD [25-29]. Vibro-

impact NESs have high-frequency internal resonances behavior with the host structure, 

and dissipate energy through the impact of oscillators [30-35].  

Other types of NESs include the gas-spring NESs [36-39], the rotary NESs [40, 

41], NESs with nonlinear damping [42-44], multi-DOF NESs [45-47], and multi-stable 

NESs [48, 49], and scholars have conducted extensive research on the vibration 

reduction characteristics of these NESs through experimental, numerical, and 

theoretical analysis [50-54]. The use of permanent magnets to provide smooth nonlinear 

restoring forces in NESs has been increasingly investigated [22, 55-66]. Al. Shudeifat 

[52] proposed a new type of NES by introducing the NES based on asymmetric magnets. 

The magnetic NES significantly improved the shock mitigation performance over 

broadband energy input compared to the CNES. Chen et al. proposed a magnetic BNES 

for seismic control. By applying it to single-DOF and multi-DOF frame structures, the 

broadband and robustness of the magnetic NES were verified by using multiple seismic 

waves [22, 55]. Zeng et al. [56] introduced a method involving fixing a magnet in the 

center of a clamping pre-compressed beam and placing magnets on both sides of the 

fixed magnet to create a tri-stable NES (TNES). TNES can dissipate energy through 

inter-well chaotic oscillation between three stable points, to achieve the purpose of 

effectively suppressing vibration. Rezaei et al. [57-59] found that magnetic bi-stable 

NES (MBNES) and magnetic tri-stable NES (MTNES) can effectively suppress 

vibration in a wide frequency band, and their performance was better than that of linear 

vibration absorbers. Feudo et al. [60] applied the MBNES with adjustable linear 

stiffness to the research of vibration control of a three-story frame structure. The 

vibration of the host structure was significantly reduced under impact shock excitation, 

free vibration with initial displacement applied, and single-frequency excitation, 

indicating that MBNES can effectively control the vibration of the primary structure.  

To summarize, the BNES and the TNES have the attractive features of a lower 
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targeted energy transfer (TET) threshold, strongly modulated response (SMR), and 

more energy dissipation than the conventional NES. In addition, the magnet-spring 

mechanisms consisting of elastic springs and permanent magnets can achieve a wide 

variety of NES characteristic, such as multi-stable characteristics, and has the 

characteristics of adjustment of stiffness [61-63].  

Hence, the use of multi-stable NESs to control vibration of the structures holds 

bright application prospects. Accordingly, this study creatively proposes a new NES  

with three stable points through coupling magnets with springs. Compared with existing 

TNES, the proposed TNES in this study has the characteristics of extreme simplicity 

(The system comprises solely an oscillator, guide rail, outer and inner magnets, and a 

spring.), allowing for great on-the-fly adjustability (Adjustable stable points are 

achieved in the MTNES by varying the size and arrangement of the inner and outer 

magnets along with the stiffness of the springs.), and strong nonlinearity (Nonlinear 

repulsion force generated by outer and inner magnets.). Additionally, a cantilever beam 

is chosen as the host structure while assessing the effectiveness of the new MTNES. 

Consequently, through a combination of theoretical analysis, numerical analysis and 

experimental verification, this study verifies that the proposed MTNES has a broadband 

vibration suppression effect and a high sensitivity to small vibrations at the endpoint of 

the cantilever beam.  

This paper is organized as follows: In Section 2, the mechanical model and 

mechanism of the proposed MTNES are introduced. An optimization method for 

MTNES system parameters is proposed in section 3, and the effectiveness of the 

optimization method is verified by using parameter analysis under harmonic excitation. 

In Section 4, a comparative analysis of the response of the cantilever beam system 

coupled with MTNES is conducted using both the harmonic balance (HB) method and 

the Runge-Kutta (RK) method. In this case, the magnetic restoring force is simplified 

into polynomial form. In Section 5, the experiments on the dynamic analysis of the 

cantilever beam MTNES is carried out. 
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2. Proposed MTNES 

According to [64], a previously proposed mechanism by the researchers obtained 

a magnetic-spring bi-stable NES (MBNES) through a careful selection of magnets and 

springs. Here, this mechanism is modified to allow for three stable points. Fig. 1 is the 

schematic diagram of the proposed MTNES with three different stable points by adding 

an additional set of symmetrical outer magnets to the MBNES design mentioned in [64]. 

The restoring force is generated by a combination of a spring and magnets that are 

symmetrically arranged on both sides of the oscillator. The restoring force between the 

inner and outer magnets is configured in repulsion. The magnets are identical and the 

length, height and thickness are 2a, 2b and 2c, respectively. The distance between the 

outer surfaces of the inner and outer magnets is d. As shown in Fig.1(b), at the stable 

point 2, the distance between the two outer magnets is e. The distance between the 

center of the inner and outer magnets along the moving direction of the oscillator is L. 

The linear stiffness of the spring is kl. As described in Fig. 1(a) and Fig. 1(c), the 

distance between the center of inner magnets of stable points 1 and 3 and the outer 

magnets in the moving direction is Lm. The magnetic charge model for the stiffness 

restoring force Fn of the MTNES system is presented in [65, 66]. 
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where w is the displacement of the oscillator, J is the polarization intensity of the 

magnets with a value of 1.34 T, µ0 is the vacuum permeability factor and generally 

considered as 4π×10-7 H/m [65], and  
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Fig. 1 Schematic diagram of the three stable points of MTNES mechanism: (a) Stable point 1; 

(b) Stable point 2; (c) Stable point 3. 

3. Cantilever beam with MTNES 

3.1 Equations of motion 

Fig. 2 depicts the schematic of the compound system. This system consists of a 

homogeneous Euler-Bernoulli cantilever beam and an MTNES. The governing 

equation of the system is given by [62, 63, 67-70], 

  

Fig. 2 A cantilever beam coupled to an MTNES. 
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Where the subscripts t and x represent the partial differentiation with respect to 

time and displacement, respectively. M is the mass density per meter, E is the elastic 

modulus of the steel, I is the moment of inertia, and C is the equivalent viscous damping 

of the host structure. The displacement of the host structure is u(x,t). w(t), ẇ(t) and ẅ(t) 

represent the displacement, velocity, and acceleration of the oscillator, respectively. mn 

is the mass of the oscillator, cn is the damping coefficient in the MTNES, and Fn is the 

nonlinear restoring force in the MTNES. δ is the Dirac function. The nth vibration mode 

ϕn and the natural frequency ωn of the cantilever beam are given by, 
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where An is the amplitude of the mode and βn is calculated by, 
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The geometric displacement coordinates of the cantilever beam are converted into 

generalized coordinates, represented by the mode shape amplitude, through the 

utilization of the Galerkin method. The expression is given by,
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In this compound system, only the first bending mode of the cantilever beam is 

modeled, that is h = 1, so the Eq. (4) can be written as, 
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The parameters of the cantilever beam that also will be used in the experiments 

are given in Table 1. The excitation point of the external load is at 0.2L away from the 

fixed point of the cantilever beam, specifically, s = 0.297 m. The MTNES is situated at 

the end point of the cantilever beam, with r = 1.486 m.  

Table 1 The parameters of the cantilever beam  
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L D (Width) T (Thickness) ρ (Density) 

1.486 m 0.076 m 0.0122 m 7.85×103 kg/m3 

M I E 
ξn (Equivalent damping 

coefficient) 

7.278 kg/m 1.15×10-8 m4 206 GPa  0.75% [72] 

bs1 bf1 Φ1(L) Φ1(s) 

1.66×104 20.07 2.724 0.174 

According to the parameters listed in Table 1, the natural frequency ɷ1 is 28.7 

rad/s (4.57 Hz). In this model, the harmonic load is used as the external load, that Fs(t) 

= F·cos(Ω·t). F and Ω are the amplitude and frequency of the harmonic load. The total 

mass of the cantilever beam is m = 10.816 kg. As suggested in [27, 55, 71], the ratio of 

the mass of the oscillator mn to the mass of the host structure γ is set as 0.05, i.e. mn = 

0.54 kg . As recommended in [72], the equivalent damping coefficient ξ1 is 0.75%. The 

damping coefficient is cn, and the nonlinear restoring force is Fn. 

 

3.2 Optimization of MTNES 

Determining optimal parameters for the MTNES is crucial to achieving the most 

effective vibration reduction. Furthermore, it is also a crucial factor in ensuring that 

MTNES exhibits three stable points. The impact load is used as an external excitation 

load for parameter optimization. An initial velocity is applied at the end point of the 

cantilever beam and set as 22.0  m/s in the first mode, allowing the oscillator within 

MTNES to undergo a steady-state transition during the initial stages of vibration control 

[26, 55, 64]. The optimizing objective function is given by,  
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Where EMTNES is the total energy dissipated by MTNES. Eini is the initial input 

energy in the host structure. DRMS,U and DRMS,C are the root mean square (RMS) 

displacement of the endpoint of the uncontrolled and controlled host structure. The 

expression of EMTNES/Eini and (DRMS,U-DRMS,C)/DRMS,U are given by, 
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The more the objective I approaches 1, the better the control performance of the 
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NES. The deflection of the cantilever beam u(x,t) is assumed to be the product of the 

first mode shape ϕ1 and a general coordinate q(t), as shown in 
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A global optimization method is used to obtain the parameters of the MTNES. The 

total time of the simulation is 15 seconds for each parameter combination.  According 

to [64, 73, 74], the design parameters kTMD (the optimal spring stiffness) and cTMD (the 

optimal damping coefficient) of TMD should be calculated first, and then use these two 

parameters as the reference to determine the optimization range of linear spring stiffness 

(kl) and damping coefficient (cl) in MTNES. These parameters are calculated by  
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Where kTMD and cTMD are 393 N/m and 7.3 N/(m/s). Taking into account that the 

parameters of MTNES devices should be easily obtained, the optimization scope of 

magnets' size, the optimization step are listed in Table 2. Simultaneously, in order to 

make the parameter optimization scope of kl and cl contain kTMD and cTMD, the 

optimization scope of kl is set from 150 N/m to 450 N/m, with step size 10 N/m and the 

scope of cl is set from 2 N/(m/s) to 20 N/(m/s), with step size 1 N/(m/s) [55,64]. Before 

calculating each set of parameters by using the 4th order Runge-Kutta method, it is 

initially confirmed that the nonlinear restoring force curve of the MTNES intersects the 

X-axis at five points. For each step, the objective function I is computed, and the Imax 

is 0.768. 

Table 2 Optimization parameters of MTNES 

Parameter Optimization scope Optimization step size Optimal value Imax 

2a(mm) 10-30 2 20 

0.768 

2b(mm) 5-15 1 10 

2c(mm) 1-5 1 4 

d(mm) 1-10 1 6 

e(mm) 0-5 1 0 

kl(N/m) 150-450 10 210 

cl(N/(m/s)) 2-20 1 8 

Fig. 3 displays the restoring force and potential energy of the optimized MTNES 

system. It is obvious that the restoring force curve has 5 intersection points with the x-

axis and the potential energy curve has three potential sinks which correspond to three 
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stable points. Fig. 4 shows the displacement attenuation of the beam’s endpoint with 

initial velocity ( 22.0 m/s) under controlled and uncontrolled conditions. It is apparent 

that the MTNES can quickly absorb and dissipate the vibration energy in the host 

structure.  

 

Fig. 3 Restoring force curve and potential energy curve of the optimized MTNES. 

 

Fig. 4 Displacement of the endpoint of the cantilever beam with and without MTNES. 

3.3 Parameter sensitivity analysis under harmonic force  

To verify the applicability of the optimization method (Eq.12) in the previous 

section also provides excellent performance under harmonic force, it is necessary to 

analyze the parameters that affect the vibration response of the system. The efficacy of 

energy dissipation of the MTNES is significantly influenced by its position on the 

cantilever beam, the location and the magnitude of the external load, spring stiffness, 

viscous damping, and the mass ratio of the oscillator in the MTNES. The energy 
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dissipated in the MTNES is derived from the governing expression and described as, 
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Where Ttot is the total time of harmonic loading excitation and set as 15 seconds. 

The closer for the energy dissipation ratio ET is to 1, the better dynamic control 

performance of MTNES. Based on the calculation results in Fig. 5, the impact of 

harmonic loads cause the coupled structure to exhibit a transient response in the initial 

stage or strong modulated response (SMR) which will discuss in detail later, leading to 

a non-smooth phenomenon. When F is 150 N, Ω is 4.5 Hz, and s is 0.297 m, as MTNES 

moves closer to the endpoint of the beam, it becomes more efficient at absorbing and 

dissipating the energy from the host structure. As depicted in Fig. 5(a), the maximum 

energy dissipation ratio is 88.8%. Therefore, in the subsequent parameter analysis, 

MTNES is positioned at the endpoint of the cantilever beam.  

Fig. 5(b) illustrates the variation in the energy consumption ratio concerning the 

magnitude of the external load. The MTNES exhibits effective vibration reduction and 

energy dissipation within the range from 50 N to 200 N of the external loads. It shows 

a plateau near 0.88, indicating a saturation in performance. As depicted in Fig. 5(c), 

when F is 150N, with s ranging from 0.1486 m to 1.486 m (0.1L to L) away from the 

fixed end of the cantilever beam, the energy dissipated by MTNES in relation to the 

input energy initially increases and then decreases. Particularly within the range of 

0.1486 m to 0.4458 m (0.1L to 0.3L), the MTNES exhibits the capacity to absorb and 

dissipate over 75% of the input energy. The peak value occurs at the position 0.372 m 

(0.25L) away from the fixed end. The results depicted in Fig. 5(d) indicate that MTNES 

achieves optimal energy dissipation capability when the mass ratio approaches 0.05. 

However, when the mass ratio is over 0.05, the energy dissipation effectiveness of the 

MTNES does not notably increase and instead exhibits a slight downward trend. 



 13 

   

    

Fig.5 Energy dissipated ratio: (a) Different location of the MTNES; (b) Different amplitude of 

the external load; (c) Different location of the external load; (d) Different mass ratio. 

Fig. 6 illustrates the linear stiffness and linear damping in MTNES effect on the 

energy dissipated ratio. During the parameter analysis of the MTNES, with s=0.297 m, 

F is 150 N, r=1.486 m, and mn=0.54 kg.
 

Note that when keeping the magnets in the 

MTNES constant and the spring stiffness is between 90 N/m and 220 N/m, there are 

three steady-state points in the MTNES. When the linear stiffness kl is 210 N/m and the 

damping coefficient is 9 N·s/m, the MTNES shows the best energy dissipation 

performance of 0.891. The obtained parameters are nearly identical to those optimized 

with impact load as the external load. 
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Fig.6 The impact of the combination of linear spring stiffness and damping in MTNES on the energy 

dissipated ratio. 

4. Vibration reduction analysis  

4.1 Simplification of restoring force 

The complex restoring force described in Eq. (1) makes further analysis difficult. 

Therefore, the nonlinear force expression (visualized in Fig. 3) is approximated here by 

a polynomial series, proven to be accurate for other complex restoring forces [56, 75]. 

The least squares method is used to perform the polynomial approximation of an 

interval, and the expression is obtained as,  
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Fig. 7 compares the polynomial restoring force curve and the magnetic restoring 

force curve, showing a good agreement within the fitted range of ± 0.032 m. 

 

Fig.7 Comparison between magnetic restoring force and polynomial restoring force. 

A numerical simulation is done to compare the fit dynamically. The harmonic 

external load Fs(t)=60·cos(2π·4.5·t) is used to numerically analyze the response of the 

coupled system using magnetic restoring force and polynomial restoring force. The 

endpoint's displacement response and the oscillator's relative displacement response 

calculated using the two nonlinear restoring force models shown in Fig. 8(a) and Fig. 

8(b) are almost consistent. Although there is a slight deviation in the oscillator's 

response during the initial stage, primarily due to its oscillation near the unstable point. 

However, the steady-state response is consistent. Thus, for harmonic loads under steady 

state, the polynomial fitting restoring force model can replace the magnetic restoring 

force model to allow further analytical investigations. 
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Fig.8 Comparison of system response between using polynomial restoring force and magnetic 

restoring force: (a) Displacement of the endpoint; (b) Relative displacement of the oscillator. 

4.2 Harmonic balancing method 

The vibration control performance of MTNES will be analyzed using the harmonic 

balance (HB) method [76-81], where a harmonic solution is proposed for the 

displacement. The Eq.(10) which contains the restoring force of the MTNES expressed 

in polynomial form is given by, 
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Only the first mode of the cantilever beam is taken into consideration. The relative 

displacement between the oscillator of MTNES at the endpoint of the cantilever beam 

is z (z=w-u). After some manipulation and introducing dimensionless time ( t1 = ), 

Eq. (18) becomes, 
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Then, the harmonic balance method is used to analyze the system under the action 

of harmonic excitation of a single frequency  . The complex Manevitch variables A 

and B are introduced [77, 78], 
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The original variables u and z in Eq. (19) can then be substituted by, 
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Substituting (20) into (18) and only keeping the terms with ie  yields, 
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    (22) 

In the situation of steady state response, where 0== BA  , Eq.(22) can be 

reduced to,

 

).9,7,5,3,1(0)(

,
2

1
)(2)1(

2

1
*2

1

2

19

1

2

22

1

2

==+++−

=+−+−

−++

=

 









 BBCkBiBA

FBAAiA

n

      (23) 

Additionally, the complex variables A and B can be written in polar form as 

2/iaeA =  and 2/ibeB = . The second equation of Eq. (23) can be manipulated into 

a situation where the module of A is equal to the module of B. Let Za=a2 and Zb=b2, the 

first slow invariant manifold (SIM) between Za and Zb can be obtained as,  

.
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        (24) 

 Simultaneously, via combining the two equations in Eq. (23), the SIM between 

Zb and F  can also be obtained as, 

.)()]())(([)]()()([ 222 FXXZXXZKZZKXX bnbbbn =−+−+−++       (25) 

Where 
2

=X , 



X−

=
1

,



 12
= . 

The stability of Eq. (24) is computed in Appendix A and the stability of Eq. (25) 

is shown in Appendix B. If the excitation amplitude F  of the external load is chose,  

the relationship between the excitation frequency   and Zb can be determined via Eq. 

(25). Then the relationship between Za and   is obtained from Eq. (24), obtaining a 

frequency response. Next, A comparison between the frequency response obtained from 

HB, the simulation results by using the RK method from Eq. (18) 
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4.3 Comparison between RK and HB method 

Fig. 9 illustrates the response of the system in detail. The thicker lines in Fig. 9(a) 

show the response amplitude of the controlled structure obtained from Eq.(24) and 

Eq.(25) via the HB method and the thinner lines are the response amplitude of the 

uncontrolled structure. The solid lines and the dashed lines correspond to stable 

solutions and unstable solutions, respectively. +

aZ  (the dashed black line above) and 

−

aZ  (the dashed black line below) correspond with the local maximum amplitude and 

minimum amplitude of the SIM with different  . Compared with the response of the 

uncontrolled host structure in the frequency domain, MTNES can effectively suppress 

the response amplitude of the host structure in a wide frequency band (from  = 0.88 

to  = 1.12). Additionally, the MTNES will cause the response of the cantilever beam 

to distort and saturate near the resonance frequency. However, when the amplitude of 

the external load gets larger and   is between 0.75 and 0.9, a bifurcation leads to the 

existence of an isolated response which is an undesirable response since it exhibits 

almost the same amplitude compared to the response without the MTNES. 

Fig. 9(b) features two slow invariant manifolds (SIM) calculated by Eq.(24) for 

 = 1 and  = 0.82 when the amplitude of the external force is 180 N. The SIM shows 

the shape of 'S' and has the characteristics of the local maximum point and the local 

minimum point. In particular, as exhibited in Fig.9(c) where the red line is the upper 

envelope of the response in the time domain, when  = 1, due to the suppression effect 

of MTNES on the vibration of the host structure, a situation called a strong modulation 

response (SMR) occurs, where the MTNES and the host structure's vibration amplitude 

is modulated and energy is continuously exchanged between the MTNES and the 

cantilever beam. This occurs around the resonance frequency where the frequency 

response is unstable.  

The blue colored line in Fig. 9(b) represents the envelope of the response of the 

host structure and oscillator, obtained from the simulation of Fig. 9(c). The mechanism 

driving the SMR is the SIM, the right branch of the SIM descended, resulting in a 

reduction in the amplitude of the host structure. Once the minimum value of SIM is 

attained, the dynamics transition to the left branch. Then, the dynamics ascend along 
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the left branch, upon reaching the maximum value of SIM, the dynamics return to the 

right branch, thus completing the reciprocating motion cycle, clarifying the periodic 

modulation of the vibration amplitude.   

The time domain responses shown in Fig. 9(d) and Fig. 9(e) correspond to the red 

point ( = 1) and the green point ( = 0.82) in the SIM (Fig.9(b)), respectively. The 

red point in the left branch (without initial velocity) of the SIM corresponds to the lower 

point in the left branch in Fig. 9(a) and has a lower amplitude response compared with 

the green point ( 22)0( =x ) in the right branch corresponding to the upper point in the 

left branch in Fig. 9(a). This implies that in a coupled system, even if the frequency of 

the external excitation load is not near the resonance frequency of the host structure, 

under specific initial conditions, the response of the host structure and the oscillator 

may transition to the isolated branch, and its response may be higher than that of 

uncontrolled structures. 

 

   

Fig. 9 Analysis of the compound system: (a) HB analysis with different F; (b) SIMs for two 

different frequencies; (c) system response when  =1 (RK method); (d) system response when 

=0.82 (RK method); and (e) system response when  =0.82, with (0) 2 2x =  (RK method). 

Fig. 10(a) compares the typical behavior comparing the results of the HB method 

with the results obtained through the RK method. Specifically, during periods of steady-
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state response in the host structure, the results by using the RK method correspond 

closely to those by using the HB method. Furthermore, in instances of SMR, the 

maximum and minimum response amplitude computed by the RK method correspond 

to the local maximum (the dashed line above) and local minimum (the dashed line 

below) values of SIM, respectively. The RMS values derived from the RK method also 

reflect the results of the HB method. Upon increasing the external load amplitude to 

180 N, as depicted in Fig. 10(b), compared to Fig.10(a), the isolated response touches 

the main branch of HB. Consequently, for several frequencies   , the response 

calculated by the RK method transitions into an isolated response, resulting in an 

undesirable high-amplitude response in the host structure. 

 

Fig. 10 Frequency response comparison between the HB method and the RK method: (a) F=150 N; 

(b) F=180 N. 

5. Experimental validation 

5.1 Experimental setup 

The experimental setup is depicted in Fig. 11. The parameters of the cantilever 

beam and the MTNES are the same as mentioned in Table 1 and Table 2. The position 

of the external load (0.2L away from the fixed point) and the MTNES (at the end of the 

cantilever beam) are the same as those explained in the previous sections. The damping 

force is generated because of the relative motion between the oscillator in the MTNES 

and the rail passing through it. The oscillator is made of copper and other parts are made 

of aluminum alloy to avoid affecting the nonlinear forces provided by the magnets. To 

apply the force, firstly, the harmonic signal is generated by the signal generator, and 

then amplified by the power amplifier, and is finally transmitted to the shaker to excite 
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the cantilever beam. The displacements of the excitation point and the endpoint of the 

cantilever beam are obtained through two laser displacement sensors. The displacement 

of the oscillator is obtained by collecting its acceleration during motion and integrating 

it twice. The load of the excitation point is obtained through a load sensor. The data 

sampling frequency is 1000 Hz. 

 
Fig. 11 Experimental setup. 

Fig. 12 is the diagram of the locations of the three steady-state points in the 

MTNES, which is consistent with what is shown in Fig. 1.  

   

 

Fig. 12 Stable points in MTNES: (a) Stable point 1; (b) Stable point 2; (c) Stable point 3. 

5.2 System identification 

The identification of the system includes the dynamic parameters of the cantilever 
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beam and the MTNES. The cantilever beam is swept with a harmonic load excitation 

with frequency range from 0.5 Hz to 10 Hz, and the displacement response of the 

endpoint of the cantilever beam is shown in Fig. 13. By using the fast Fourier transform 

(FFT) method, the first natural frequency of the cantilever beam is 4.517 Hz, which is 

almost consistent with the theoretical calculation of 4.57 Hz. Simultaneously, the 

damping ratio of the cantilever beam obtained by applying the resonance amplification 

method is 0.763%, which is almost the same as the 0.75% recommended by [72].  

      

Fig. 13 Sweep excitation results of the host structure: (a) Displacement of the endpoint; (b) 

Spectrum analysis. 

The restoring force surface (RFS) method is a graphical tool that can effectively 

detect and visualize nonlinear systems, and has been used in the system identification 

of NES [64, 82-89]. According to Newton's second law, discrete nonlinear systems have 

the following characteristics, 

).,( wwFFwm nen
 =−                          (26) 

where Fe is the externally applied force can be expressed as Fe = -mnü, and Fn(ẇ ẅ) is 

the restoring force of the MTNES, containing the damping force and nonlinear restoring 

force provided by the coupling of spring and magnets. The idea of RFS is to use 

measurements where w is small to fit a stiffness force, and measurements where w is 

small to fit a damping force. To verify the accuracy of the restoring force model of the 

MTNES calculated by Eq. (1) and to obtain the equivalent viscous damping coefficient 

cn of the MTNES, it is necessary to obtain w, ẇ, ẅ, ü, and Fe. A stepped sine motion 

with a frequency from 0.5 Hz to 5 Hz is applied to the cantilever beam to acquire the 

acceleration (ẅ) of the oscillator and the displacement (u) at the endpoint of the 

cantilever beam.  

Fig. 14 (a) shows the stiffness curve calculated via Eq.(1) and measured data of 
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the MTNES. The blue dots are the data obtained from the experiment and the red curve 

is the expected stiffness force of the MTNES, calculated from Eq. (1). The points for ẇ 

range from -0.01 m/s to 0.01 m/s are picked. These points are close to the MTNES 

restoring force curve, which proves that Eq. (1) can effectively predict the nonlinear 

stiffness restoring force of the device. The points for w range from -0.0005 m to 0.0005 

m are chosen to plot Fig. 14(b). Linear fitting is performed on these points, and the 

obtained viscous damping coefficient cn of MTNES is 4.83 N·s/m and will be used in 

the following numerical analysis.  

  

 Fig. 14 Restoring force curve and measured data: (a) Stiffness force; (b) Damping force. 

5.3 Vibration damping performance and discussion 

The experimental performance of the NES is now investigated. The excitation is a 

cosine sweep signal with a frequency range from 0.5 Hz to 10 Hz. The amplitudes of 

the external loads are 60 N and 150 N, respectively. The displacement of the endpoint 

of the cantilever beam with and without MTNES is shown in Fig .15.  

It is evident that when the excitation frequency of the external load is below 3.4 

Hz, the MTNES cannot effectively control the vibration of the cantilever beam because 

the energy in the host system fails to reach the threshold required to activate the 

MTNES. When the frequency of the external load is from 3.4 Hz to 5 Hz, the MTNES 

can effectively suppress the vibration of the cantilever beam and reduce the 

displacement response of the cantilever beam. When subjected to frequency sweep 

excitation with an external load of 60 N, the maximum displacement response at the 

endpoint decreases from 0.018 m (without MTNES) to 0.011 m (with MTNES). 

Similarly, the maximum response at the endpoint of the cantilever beam decreases from 
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0.028 m (without MTNES) to 0.013 m (with MTNES) when the external excitation load 

is 150 N.  

With an external load of 60 N, the oscillator moves between stable point 1 and 

stable point 3 due to the low energy input from the external load. However, for the 

external force is 150 N, when the load frequency is between 3.8 Hz and 4.5 Hz, the 

oscillator continuously undergoes steady-state transitions and target energy transfer, as 

shown in Fig. 16.  

     

Fig.15 The displacement of endpoint under sweep frequency excitation: (a) F=60 N; (b) F=150 N. 

   

Fig.16 The relative displacement of the oscillator under sweep frequency excitation: (a) F=60 N; 

(b) F=150 N. 

The excitation is altered to a fixed signal with frequencies ranging from 3.7 Hz to 

5.0 Hz, and each excitation period lasts for 60 seconds. Fig.17 displays the displacement 

response of the endpoint of the cantilever beam with and without MTNES under 

different fixed frequency excitations (3.8 Hz, 4.4 Hz, and 5.0 Hz) when the external 

force is 150 N. These figures depict both the displacement response obtained from the 

experiment (Fig. 17(a), Fig. 17(c), Fig. 17(e)) and the RK method (Fig. 17(b), Fig. 17(d), 

Fig. 17(f)). As illustrated in Fig. 17(a) and Fig. 17(b), when the excitation frequency of 
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the external force is 3.8 Hz ( 84.0= ), both the cantilever beams with and without 

MTNES show steady-state excitation responses and the MTNES begins to exhibit 

vibration suppression effect. 

When the external load excitation frequency is 4.4 Hz ( 98.0= ), the so-called 

strongly modulated response (SMR) occurs, where the vibrations of both the host 

structure (as shown in Fig.17(c) and Fig. 17(d)) and the MTNES modulate (as shown 

in Fig.18). In this case, the displacement response of the host structure with control has 

the characteristics of maximum and minimum values. The displacement response of the 

endpoint of the uncontrolled system reaches 0.053 m, while the RMS of the coupled 

structure is only 0.018 m, the displacement suppression efficiency reaches up to 66%. 

When the external load excitation frequency reaches 5.0 Hz (   = 1.11), as 

displayed in Fig.17(e) and Fig.17(f), the displacement responses of both the controlled 

and uncontrolled structures tend to be steady-state responses, again. It means that the 

MTNES has a wide vibration absorption frequency band near the resonance frequency 

of the host structure. For an external load of 60 N, the responses of endpoint with and 

without MTNES are both steady-state responses, which will not be explained any more, 

The specific experimental results will be described in Fig. 19. 
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Fig.17 The displacement response of the endpoint under different external load frequency 

excitation (with and without MTNES): (a) 3.8 Hz (experiment); (b) 3.8 Hz (RK method); (c) 4.4 

Hz (experiment); (d) 4.4 Hz (experiment); (e) 5.0 Hz (experiment); (f) 5.0 Hz (RK method). 

   

Fig.18 The displacement response of the oscillator when the excitation frequency is 4.4 Hz: (a) 

Experiment; and (b) RK method. 

 Fig. 19 compares the displacement response from the RK method, the experiment, 

and the HB method under various frequency excitations. No matter whether the external 

force is 60 N and 150 N, the evolving trends of the three sets of data demonstrate 

consistency, indicating the effectiveness of the simplified MTNES restoring force 

model in predicting the response of the coupled structure.  
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Fig.19 Comparison of the displacement response among the RK method, the experiment, and the 

HB method: (a) F=60 N; (b) F=150 N. 

6. Conclusion 

To address the limited performance of traditional tuned mass damper, which only 

exhibits effective vibration suppression near the resonance frequency of the host 

structure and has a narrow vibration suppression band, this research introduces a 

magnetic tri-stable nonlinear energy sink (MTNES) by combining a linear spring and 

magnets to get the nonlinear restoring force. The proposed MTNES is applied to 

alleviate bending vibration in a cantilever beam and the following conclusions are 

drawn. 

(1). Through the reasonable selection of the magnets, stiffness of the spring, and 

arrangement of these elements, the proposed MTNES can effectively create a vibration-

absorbing device featuring three symmetrical stable characteristic points. The global 

optimization method is used to calculate the objective function, which includes the 

energy dissipation term and the displacement suppression term when the coupled 

structure is subjected to impact loads, to obtain the parameters of the MTNES system. 

An important point is, this method is not only for cantilever beams, but for any system 

coupled with NES. 

(2). The polynomial form is used to fit the elastic-magnetic coupling restoring 

force in MTNES, which can well describe the motion characteristics of the coupled 

system within the limited motion range of the oscillator. The harmonic balance method 

and the Runge-Kutta method are used to calculate the displacement response of the 

coupled system, and the obtained system displacement responses exhibit remarkable 
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consistency. Additionally, it is verified that MTNES can suppress the vibration of the 

cantilever beam in a wide frequency band. 

(3). According to the experimental results, it can be found that the proposed 

MTNES for suppressing the bending vibration of the cantilever beam is effective, 

significantly reducing the amplitude of the host structure near the resonance frequency 

by 66%. Moreover, the restoring force method is used to identify the parameters of the 

MTNES. The experimental and simulation results are in good agreement for the 

amplitude of harmonic excitation load of 60N and 150N. The research offers a novel 

approach for mitigating vibrations of beam structures or rod structures, presenting a 

new device for further exploration in vibration control. 
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Appendix A. Stability criterion of SIM 

Linearizing the second equation of Eq. (22) at the fixed point Beq BB −=  

obtained from the solutions of Eq. (23), the stability of the solutions on the SIM is 

described as, 
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The eigenvalues of the Jacobian matrix    dictate the stability. Positive real 

eigenvalues indicate instability of the fixed point. 

Appendix B. Stability criterion under harmonic load 

The calculation of the stability for the harmonic balanced Eq. (21) involves 

assessing the linear stability around the equilibrium points A and B, where eqA AA−= , 

eqB BB −=  and  
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If any eigenvalue of matrix Ψ possesses a real part greater than zero, the point is 

deemed unstable. 
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