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Abstract
This paper presents a novel First Order Plus Fractional Diffusive Delay
(FOPFDD) model, capable of modeling delay dominant systems with high
accuracy. The novelty of the FOPFDD is the Fractional Diffusive Delay
(FDD) term, an exponential delay of non-integer order α, i.e. e−(Ls)α in
Laplace domain. The special cases of α = 0.5 and α = 1 have already been
investigated thoroughly. In this work α is generalized to any real number
in the interval ]0, 1[. For α = 0.5, this term appears in the solution of dis-
tributed diffusion systems, which will serve as a source of inspiration for this
work. Both frequency and time domain are investigated. However, regard-
ing the latter, no closed-form expression of the inverse Laplace transform
of the FDD can be found for all α, so numerical tools are used to obtain an
impulse response of the FDD. To establish the algorithm, several properties
of the FDD term have been proven: firstly, existence of the term, secondly,
invariance of the time integral of the impulse response, and thirdly, depen-
dency of the impulse response’s energy on α. To conclude, the FOPFDD
model is fitted to several delay-dominant, diffusive-like resistors-capacitors
(RC) circuits to show the increased modeling accuracy compared to other
state-of-the-art models found in literature. The FOPFDD model outper-
forms the other approximation models in accurately tracking frequency
response functions as well as in mimicking the peculiar delay/diffusive-like
time responses, coming from the interconnection of a large number of dis-
crete subsystems. The fractional character of the FOPFDD makes it an
ideal candidate for an approximate model to these large and complex sys-
tems with only a few parameters.
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1. Introduction

Modeling of complex and interconnected processes has been a focus
of research for many years [25, 10]. Obtaining a system’s model provides
insight into the dynamical behavior and stability of a process and allows
for the design of controllers. Finding highly accurate models of complex
systems is often time-consuming, expensive and superfluous. Therefore,
literature reports on an approximation of higher order systems with First
Order Plus Dead Time (FOPDT) systems [24]. The FOPDT model is
simple and easy to fit. However, the low complexity of this approximation
often fails to model the complete dynamical behavior in both time and
frequency domain. A possible solution is higher order fitting, such as Second
Order Plus Dead Time (SOPDT) models. However, this often only yields
small improvements over an increased complexity [4, 2].

Fractional order calculus has been used to improve model fitting in
many fields of engineering, such as bio-engineering [11], control engineering
[14, 3], and electrical engineering [21] to name a few. These new models rely
on the theory of integration and differentiation of an arbitrary real order,
which is not necessarily integer [20, 18]. The fractional order, denoted by α,
can be any real or complex number. The integer order case, where α ∈ N,
is a particular case of the more general fractional order calculus.

Recently, research is focused on integrating fractional order calculus into
the low complexity FOPDT model to obtain better model fits, yielding to
the Fractional Order First Order Plus Dead Time (FO2PDT) model [16].
Other enhancements to the FOPDT model are reported in literature [27, 9].
Srinivasan and Chidambaram used the Laplace transform approach and
the modified relay feedback method to improve the FOPDT method by
introducing an extra modeling parameter [23].

The current research has been inspired by two observations: i) the so-
lution of diffusion equations, a class of partial differential equations (PDE),

contains a fractional order exponential term e−(Ls)0.5 in Laplace domain;
and ii) in [22], thermal diffusion processes have been modeled as lumped-
parameter resistors-capacitors (RC) networks. This work combines both
observations into the following hypothesis: “Using the generalized term
e−(Ls)α , delay dominant systems, which can be expressed as a finite series
of interconnected discrete subsystems, are modeled with an increased accu-
racy.” This fractional exponential term will be referred to as the Fractional
Diffusive Delay (FDD) term. Examples of these delay-dominant systems,
also known as process reaction curves, are electrical circuits, smart grids
[28, 8] and municipal water systems [17].
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This new FDD term opens the door to a new fractional approximation
model: the First Order Plus Fractional Diffusive Delay (FOPFDD) model.
An exploratory research [7] first investigated the combination of FDD and a
first-order model in frequency domain. The findings of Juchem et al. (2019)
were later used in [15] to examine stability margins related to closed-loop
behavior. The time domain aspect and the relation to time delay and
diffusion are not explored in these preliminary works.

The current work gives more theoretical background on FDD, includ-
ing an extensive discussion in time domain, which is never done before.
The time domain response, following from the inverse Laplace transform of
e−(Ls)α , allows us to better understand the effect of the FDD’s parameters.
Preliminary results regarding the link with diffusion and delay are given as
well. Furthermore, the performance of the new model is compared to the
other models mentioned before for an RC circuit of variable size.

This paper is structured as follows: the next section provides a link
between the FDD and the diffusive partial differential equation both in
frequency and time domain. Numerical simulation issues are addressed
as well. The third section presents the FOPFDD modeling method. The
fourth section presents the performance of the approximation model, while
the fifth section provides a discussion. The final section gives a main con-
clusion and future work.

2. Origins & Theoretical Concepts

In this section, the heat equation is discussed as a special case of diffu-

sion equations, where the solution of this PDE gives rise to the term e−Ls
0.5

in the Laplace domain. The generalized form of this term e−(Ls)α , the Frac-
tional Diffusive Delay (FDD), is discussed from a theoretical point-of-view.
First, the straightforward frequency domain behavior of the FDD is de-
scribed. Then, some remarks regarding time domain and some interesting
properties are proposed. An inverse transformation of FDD from Laplace
domain to time domain and its numerical implementation are not trivial.
Therefore, the final part addresses an algorithm to obtain the impulse re-
sponse of the FDD using numerical tools.

2.1. Heat diffusion equation: a source of inspiration. A fractional
exponential term has already appeared in differential equation theory. The
heat diffusion equation is a well-known PDE that represents the heat dis-
tribution in a material in time and location

ut = κ∇2u, (2.1)

with κ the thermal diffusivity and ut the time derivative of u(x, t). In
the case of a semi-infinite, uniform and 1-dimensional rod, u(x, t) is the
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Ri(x,t)

Cu(x,t) u(x+ dx,t)

i(x+ dx,t) R

C

Figure 1. Electro-analog model for heat diffusion in an
infinitesimally small section of a thermally conductive rod.

temperature profile along the x-axis and at time t, which leads to

∂u(x, t)

∂t
= κ

∂2u(x, t)

∂x2
. (2.2)

This PDE is accompanied with boundary conditions. With these, the trans-
fer function of this distributed parameter system can be obtained, as shown
in [5].

In [22], Sierociuk et al. make use of a large number of connected
resistors-capacitors (RC) networks as an electro-analogon of this thermal
diffusion process. A semi-infinite, thermally conductive rod is modelled
as an infinite amount of interconnected RC networks by subdividing the
rod in infinitesimally small sections and modeling each of section as a RC
network.

In Figure 1, an infinitesimally small section is depicted as an RC circuit.
In this rod section, the continuous material is lumped into two identical
subsystems, as shown in Figure 1. Using Ohm’s law, it follows:

u(x, t)− u(x+ dx, t) = Ri(x, t) (2.3)

i(x, t)− i(x+ dx, t) = C
∂u(x, t)

∂t
. (2.4)

Now, for dx→ 0 this can be rewritten


∂u(x, t)

∂x
= Ri(x, t) (2.5)

∂i(x, t)

∂x
= C

∂u(x, t)

∂t
, (2.6)
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which by combining (2.5) and (2.6) yields an equivalent expression as (2.2)
with κ = (RC)−1: 

∂2u(x, t)

∂x2
= RC

∂u(x, t)

∂t
(2.7)

u(x, 0) = 0

u(0, t) = f(t).

Given the boundary conditions, the solution of U(x, s) in the Laplace do-
main is:

U(x, s) = F (s) exp
(
−
√
RCs · x

)
, (2.8)

where F (s) = L[f(t)](s). So, at an arbitrarily chosen position x the tem-
perature profile in frequency domain is related to the term exp(−(Ls)α)
with α = 0.5. Notice that this solution, with α = 0.5, applies to an infinite
number of interconnected RC networks.

Lately, there is a trend to generalize physical laws and their respective
PDE’s using non-integer order differentials. In the past, these generaliza-
tions have been proposed to describe the propagation of plane electromag-
netic waves in isotropic and homogeneous, lossy dielectrics, the Maxwell
equations, and even Newton’s second law [20]. In this line of thought, the
authors propose a generalized, fractional order heat diffusion PDE:

∂2u(x, t)

∂x2
= L2α∂

2αu(x, t)

∂t2α
, α ∈]0, 1[ (2.9)

u(x, 0) = 0 (2.10)

lim
s→∞

U(x, s) = 0 (2.11)

U(0, s) = F (s), (2.12)

with the definition of ]a, b[ = {x ∈ R|a < x < b; a, b ∈ R} and with the
fractional derivative of order µ > 0 in the Caputo sense:

dµ

dtµ
f(t) =

{
1

Γ(m−µ)

∫ t
0

f (m)(τ)dτ
(t−τ)µ+1−m m− 1 < µ < m

dm

dtm f(t), µ = m
(2.13)

with Γ(z) =
∫∞

0 tz−1e−tdt, the gamma-function.
Boundary condition (2.12) is the Laplace transform of the input signal

(i.e. temperature or voltage for thermal or electric PDE’s respectively) in
time at location x = 0. A step and impulse input signal is given by F (s) = 1

s
and F (s) = 1 respectively. Remark that the PDE in (2.9) resembles the
fractional diffusion-wave equation in [6] (D = 1/L2α, and α is scaled with
a scalar) and the time-fractional diffusion equation in [12] (Kβ = 1/L2α,
and β is equal to 2α).
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The transfer function of the proposed PDE can be found by taking the
Laplace transform of (2.9):

s2αU(x, s)− u(x, 0) =
1

L2α

∂2U(x, s)

∂x2
. (2.14)

From boundary condition (2.10) it follows that

d2U(x, s)

dx2 − (Ls)2αU(x, s) = 0. (2.15)

This is an ordinary differential equation and the solution has the form:

U(x, s) = C1(s) exp ((Ls)αx) + C2(s) exp (−(Ls)αx) . (2.16)

The boundary conditions (2.11) and (2.12) give rise to the following solution

U(x, s) = F (s) exp (−(Ls)αx) . (2.17)

This generalization of the heat diffusion equation in (2.9), with the
well-known expression for α = 0.5, generates a solution (2.17) that contains
the term exp (−(Ls)α). This concludes the premise that it is possible to
construct the fractional exponential term with an adapted heat diffusion
PDE, which is extended with fractional calculus.

2.2. FDD: frequency domain. As mentioned in [7], the FDD can be
rewritten to obtain the frequency response as:

exp (−(Ls)α)|s=jω= exp
(
−(Lω)α cos

(απ
2

))
·[

cos
(

(Lω)α sin
(απ

2

))
− j sin

(
(Lω)α sin

(απ
2

))]
, (2.18)

where the modulus and phase are:

M = exp
(
−(Lω)α cos

(απ
2

))
(2.19)

φ = −(Lω)α sin
(απ

2

)
. (2.20)

As shown in equations (2.19) and (2.20), varying L influences both mod-
ulus and phase. This coupling between modulus and phase is an interesting
feature of the FDD. For completeness sake, there is no coupling between
the modulus and phase for any parameter for α = 1, i.e. integer order
delay, as the modulus and phase simplify to Mα=1 = 1 and φα=1 = −Lω.
The integer order exponential is a special case in which the dead time L
does not appear in the equation of the modulus.
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2.3. FDD: time domain - theoretical derivation of the impulse
response. The FDD system’s transfer function is relatively easy to analyze
in frequency domain with graphical representations like Bode plots, Nyquist
plots, etc. However, in time domain the analysis is not straightforward.
No direct inverse Laplace transform L−1[G(s)](t) for the transfer function
exists and the technique of partial fraction decomposition is not an option.
To find the impulse response of the FDD, its transfer function is expanded
according to Taylor series:

L−1 [exp (−(Ls)α)] (t) = L−1

[ ∞∑
i=0

(−(Ls)α)i

i!

]
(t)

=
∞∑
i=0

(−Lα)i

i!
L−1

[
sαi
]

(t)

=
∞∑
i=0

(−Lα)i

i!

t−αi−1

Γ(−αi)
. (2.21)

This last step is obtained using the inverse Laplace transforms in [14], where
the Caputo definition of a fractional derivative is used (see (2.13)). The
inverse Laplace of a fractional integrator for α ∈ R is given by:

L−1

[
1

sα

]
(t) =

tα−1

Γ(α)
. (2.22)

Notice that the sum in (2.21) converges for all α > 0. For the special case
of α = 0.5 a closed-form expression of the sum can be found:

L−1
[
exp

(
−L
√
s
)]

(t) =
L

2
√
πt3/2

exp

(
−L2

4t

)
. (2.23)

For other α the authors were not able to find a closed-form expression.
The range of the fractional exponent α has been under discussion in

literature varying between ]0, 1[ and ]0, 2[ [14]. The ongoing discussion
handles the range of the fractional component for traditional poles and
zeros in transfer functions. In the definition of the FDD, the fractional
exponent α is found in the argument of the exponential function. In Lemma
2.1, it is shown that α is restricted to ]0, 1[ for the FDD.

Lemma 2.1. Given α ∈ R, L ∈ R+
0 and t > 0, then the impulse

response of exp (−(Ls)α) exists if and only if α ∈]0, 1[.

P r o o f. The proof is delivered in two steps:
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(1) For α < 0, the Taylor expansion from (2.21) does not converge (for
t ≥ 1).

(2) For α > 0, the sum converges for all t. Given the definition of the
Wright function [6]:

Wλ,µ(z) :=
∞∑
n=0

zn

n!Γ(λn+ µ)
, λ > −1, µ ∈ C (2.24)

which is an entire function for z. Rewriting (2.21) with the Wright
function gives:

∞∑
i=0

−Li

i!

t−αi−1

Γ(−αi)
= −

W−α,0(Lt−α)

t
. (2.25)

In (2.25), λ = −α. From the condition λ > −1 follows that α < 1.

2

2.4. FDD: time domain - numerical implementation. In the previous
section, it is shown that the impulse response of the FDD can be expressed
as an infinite sum (2.21). As stated before, only for α = 0.5 a closed-form
expression can be found for this infinite summation (2.23). For all other
values of α, the infinite summation has to be approximated by terminat-
ing at a finite index such that the remainder is minimal. Some problems
arise from a numerical implementation, which will be addressed here. The
algorithm to create the numerical solution of the infinite sum is created
in MATLAB R©, but could easily be translated to any other programming
language.

2.4.1. The problem of convergence and its solution. Expression (2.21)
contains the Gamma function Γ(z), which is known to have singularities,
so small numerical errors can lead to unexpected behavior. Therefore,
Lemma 2.2 is defined to end the infinite sum in a proper manner and
minimize the remainder. Before Lemma 2.2 is explained, two additional
theorems are needed for this lemma.

Theorem 2.1 (Final value theorem [19]). If g(t) is bounded on ]0,∞[
and lim

t→∞
g(t) = ρ with ρ <∞, then

lim
t→∞

g(t) = lim
s→0

sG(s)

with G(s) = L[g(t)](s).
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Theorem 2.2 (Cauchy criterion [1]). A series
∑∞

i=1 ai converges

⇐⇒ ∀ε > 0 : ∃N ∈ N⇒ |an+1 + an+2 + · · ·+ an+p| < ε, n > N, p ≥ 1

Lemma 2.2. Given t > 0, α ∈ R]0,1[, L ∈ R+
0 and f(t) is the impulse

response of F (s) = exp (−(Ls)α), then A(α) ≡ 1, with A =
∫∞

0 f(t)dt.

P r o o f. The surface underneath the impulse response is given by:

A(α) =

∫ ∞
0
L−1[exp (−(Ls)α)](t)dt

= lim
t→∞
L−1[Q(s, α)](t),

with Q(s, α) = 1
s · exp (−(Ls)α).

Due to the final value theorem (Theorem 2.1)

A(α) = lim
s→0

sQ(s, α) (2.26)

if L−1[Q(s, α)] is bounded and has a finite limit, or if f(t) is bounded and
has a finite limit. If t > 0, α ∈ R]0,1[ and L ∈ R+

0 , then the sum f(t)
converges according Lemma 2.1. Due to the Cauchy convergence criterion
(Theorem 2.2) f(t) is bounded ∀t > 0. From (2.21), lim

t→∞
f(t) = 0 if α ≥ −1

i

with i ∈]0,∞[, which is always true, because α ∈]0, 1[.
Therefore, due to (2.26):

A(α) = 1

which is independent of α. 2

Lemma 2.2 will be used to stop the infinite summation by finding the
numerical threshold for which the remainder is minimized. It is paramount
to find the amount of terms N for which the end result has been approxi-
mated with a certain tolerance. If the sum of the N first terms is close to
the theoretical surface of 1, terms with higher index are not superfluous.

Lemma 2.3. Given t > 0, α ∈ R]0,1[, L ∈ R+
0 and f(t) is the impulse

response of F (s) = exp (−Lsα), then the energy of the function depends
on α.

P r o o f. The energy of a function f(t) is defined by:

E :=

∫ ∞
−∞

f2(t)dt. (2.27)
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Also here, it is preferred to work in frequency domain as a closed-form
equation exists. For this, Parceval’s theorem is used, which leads to a
frequency domain representation of the energy:

E =
1

2π

∫ ∞
−∞
|F (jω)|2dω, (2.28)

if f(t) has finite energy. According to Lemma 2.1, this is the case for
α ∈]0, 1[. This means that from (2.19)

Eα =
1

2π

∫ ∞
−∞

exp
(
−2Lωα cos

(απ
2

))
dω. (2.29)

The question is whether a difference in energy is observed for different
α1, α2 ∈]0, 1[, α1 6= α2:

∆E = Eα2 − Eα1

= exp(−2L)

∫ ∞
−∞

exp
[
ωα2 cos

(α2π

2

)]
− exp

[
ωα1 cos

(α1π

2

)]
dω

?
= 0.

(2.30)

If the integrand g(ω) is piecewise continuous and uneven (g(−ω) = −g(ω)),
the difference in energy identifies with zero. However, g(−ω) 6= −g(ω),
which proves that the energy is not equal for different α. 2

In Lemma 2.3 a proof is given that α will affect the energy of the
signal. This fact, combined with the result of Lemma 2.2, gives insight in
the expected impulse responses before simulating.

Equation (2.21) is evaluated in the time interval t =]0, Tmax]. To un-
derstand the consequence of cutting-off the summation, it is important to
understand the effect of each sub-term on the error. Therefore, each sub-
term of the summation (2.21) is analyzed.

• First the term Li is examined. For L < 1 the term gradually de-
creases for increasing i, for L = 1, the term is a constant 1, and for
L > 1 it gradually increases for increasing i (see Figure 2a).
• Next, the denominator contains i!. This term rises for increasing
i. In MATLAB R© this term is quickly hitting the limitations of the
Double-Precision Floating Point data type (i.e. from 170! onwards).
MATLAB R© converts it to an Inf, which is detrimental to the end
result.
• The third term is an array, namely t−αi−1. The exponent −αi−1 <

0 for all i, which means that for t > 1 the term will go to zero for
increasing i. For t = 1 the terms is a constant, i.e. one. For t < 1,
the term explodes, creating numerical issues (see Figure 2c).
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Figure 2. Each term of the sum of (2.21) consists of sub-
terms. To better understand the influence of each parameter
on the entire term its behavior is plotted for different values.

• The last term is the gamma-function Γ(−αi). MATLAB R© features
a built-in function gamma(), which enables the evaluation of the
gamma-function in a certain point. The argument of the gamma-
function, −αi ≤ 0 as α ∈]0, 1[. For increasing i the term will con-
verge to zero (see Figure 2b). However, if αi→ n with n ∈ N, then
|Γ(−αi)| → ∞. For increasing i, this singularity has a diminishing
effect on its direct neighbors. This means that for αi ∈ N, the en-
tire term can be assumed to equal zero. In other cases, the term
is suffering from limitations regarding memory as well. Therefore,
it is reasonable to use a new data type, which has a larger amount
of precision, namely the Variable-Precision Arithmetic (VPA) func-
tion.

In MATLAB R©, the Variable-Precision Arithmetic (VPA) function allows to
increase the number of significant digits using a symbolic notation. How-
ever, the speed to execute mathematical operations decreases drastically.
Consequently, this data type should only be used when necessary. The two
terms in the denominator have an opposing feature when i increases, as
one increases in size and the other decreases. Therefore, both terms can be
calculated after being transformed to VPA. This leads to a smaller number,
which means both can be transformed back to double before executing the
remainder of the calculations, which makes the simulation much shorter.
The entire algorithm to find the impulse response exp (−(Ls)α) is given in
Algorithm 1. The function requires six inputs. The first five are described
before. Parameter P is a parameter that improves the quality of the im-
pulse response by discerning relevant peaks versus singularities, caused by
numerical inaccuracies. The better the estimate of the peak value (which
must be certainly higher than the actual peak value) , the better the quality
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of the impulse response. The algorithm is optimized to have the shortest
calculation time. Default input parameters are {N,P} = {200, 10}. For
increasing L, both parameters need to be lowered according to Lemma 2.2.

Algorithm 1 Fractional Diffusive Delay impulse response simulation
algorithm

Ensure: F (t) - approximation of the impulse response of FDD
1: function FDD(L, α, Ts, Tmax, N , P )
2: t← Ts : Ts : Tmax . Generate discrete time vector.
3: for i← 1, N do
4: if iα ∈ N then .
5: for all k ∈ T (k) do
6: Ti(k)← 0 . If iα ∈ N, Γ(−iα)→∞⇒ Ti(k)← 0, ∀k.
7: end for
8: else . Calculate the ith term by evaluating the different

sub-terms.
9: fi ← i!

10: gia ← Γ(−iα)
11: Lia ← (−1)iLαi

12: tpow(k)← t(k)−αi−1

13: Ti(k)← Laitpow(k)
figia

14: if (fi == Inf) ∨ (gia == Inf) ∨ (Lia == Inf) then .
Increase precision of the sub-terms.

15: fi,vpa ← vpa(i)!
16: gia,vpa ← Γ(− vpa(i)α)
17: Lia,vpa ← (−1)i vpa(L)αi

18: Cvpa ← Lia,vpa
fi,vpagia,vpa

19: Ti(k)← double(Cvpatpow(k)) . The
subterms are multiplied to decrease numerical errors. Afterwards, the
term is converted back to double precision.

20: q ← find(tpow == Inf) . a vector with the indexes
fulfilling the statement.

21: for all j ∈ q do
22: Ti(j)← double(Cvpa vpa(t(j))−αi−1)
23: end for
24: end if
25: end if
26: F (k)← F (k) + Ti(k) . Add ith term to the sum.
27: end for
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28: q1 ← find(abs(F (k)) > P ) . Removing numerical errors due to
cutting off the infinite sum.

29: if q1 * ∅ then
30: for i→ 1, q1(end) do
31: F (i)← 0
32: end for
33: end if
34: q2 ← find(F (k) < 0)
35: if q2 * ∅ then
36: for i→ 1, q2(end) do
37: F (i)← 0
38: end for
39: end if
40: end function

2.4.2. Numerical simulations. In Figure 3, the impulse responses are
plotted for varying α (Figure 3a) and varying L (Figure 3b). Notice that

lim
α→1
L−1[exp (−(Ls)α)](t) = δ(t− Lα). (2.31)

From Figure 3 the choice of the FDD’s name becomes clear. The fractional
order exponential term leads to a mix of a delay and diffusion effect. In
Figure 3a, the diffusive effect increases for α going from 0 to 0.5 and starts
decreasing again for increasing α until no diffusive effect is observed for
α → 1, which leads to the dirac response, as in (2.31). In Figure 3b,
increasing L results in a longer delay of the response to an impulse. This can
be explicitly shown with the time-scaling property of the Laplace transform:

Corollary 2.1 (Laplace transform’s time-scaling property). If x(t)←→
X(s), then

t 7→ x(at), a ∈ R, a 6= 0←→ s 7→ 1

|a|
X

(
s

a

)
(2.32)

Take F (s) = e−s
α

and G(s) = F (sL) = exp (−(sL)α). According
to Lemma 2.1, g(t) = 1

Lf( tL) with g(t) ←→ G(s) and f(t) ←→ F (s).
This shows that the parameter L is equivalent with a time-scaling and
an amplitude-scaling, which is independent of α. This again confirms the
results in Figure 3b.
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Figure 3. The impulse response for FDD for (a) varying
α with L = 1 and (b) varying delay L with α = 0.8.

3. Methodology

In this section, the authors propose a new model based on the previ-
ous observations in this paper. This new model combines the idea of a
First Order Plus Dead Time approximation with the FDD resulting in a
First Order Plus Fractional Diffusive Delay (FOPFDD) model, capable of
identifying delay-dominant, higher-order processes.

To find the FOPFDD model of a system, a methodology is provided to
find the parameters as proposed in [7]. Also, a methodology to obtain a
time domain analysis is presented in this paper. The FOPFDD model is
expressed as:

F (s) =
K

τs+ 1
e−(Ls)α . (3.1)

Notice that the choice of introducing Lα leads to a more physically intuitive
interpretation of parameter L, as it can be expressed in units of seconds
now.

3.1. Model fitting: an optimization approach. The model fitting
method is formulated as a multi-objective optimization problem. The ratio-
nale is to find a model that minimizes the error between frequency response
of the original and simplified model.

It is assumed that the frequency response function of the system that
needs to be modeled, is available, either through identification techniques
or mathematical modeling. The model is fitted on the system’s frequency
response by minimizing the error between the magnitude and phase. A
Pareto front [13] is obtained from which the trade-off between minimizing
the magnitude or the phase error can be observed (see Figure 5a). Then,
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the normalized error for both objectives is minimized, such that the optimal
fit is found. This methodology is earlier described in [7]. The minimization
problem leads to the model parameters {K, τ, L, α}.

3.2. Time domain solution. A good fit in frequency domain is impor-
tant, but many processes are evaluated in time domain. For instance, a
step response gives insight into the dynamical behavior of the system in
time. Therefore, the model in (3.1) is subdivided into two parts:

F1(s) =
K

τs+ 1
U(s);

F2(s) = exp (−(Ls)α) .

Given that F1(s) = L [f1(t)] (s) and F2(s) = L [f2(t)] (s) and remarking
that F (s) = F1(s) · F2(s), it can be stated that f(t) = f1(t) ∗ f2(t) with ∗
the convolution, due to duality. Signal U(s) is the input of the model. In
the case of a step response U(s) = 1/s. This means that

f(t) =

∫ ∞
−∞

f1(κ) · f2(t− κ)dκ. (3.2)

The time response f1(t) can be easily obtained as this is the solution of
a first order, integer order differential equation and f2(t) is found with
Algorithm 1. With this algorithm, the impulse response can be obtained
for a given L and α. With (3.2), the step response of the FOPFDD model
is obtained.

4. Results

4.1. Bench mark: RC ladder network. The series RC network that is
mentioned earlier is a perfect example of a delay-dominant, higher-order
system, which consists of a large number of subsystems. The system is
depicted in Figure 4. The input of the system is the voltage Vin and the
output is Vn.

R1 i1

C1V1Vin

R2 i2

C2V2

i3 · · ·

· · ·

Rn in

CnVn

Figure 4. RC-circuit
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This system can be rewritten in state-space form based on Kirchoff’s
current and voltage laws:

KCL→
{
ip = ip+1 + CpV̇p p ∈ [1, n− 1]

in = CnV̇n

KVL→
{
Vp−1 = Rpip + Vp p ∈ [2, n].
Vin = R1i1 + V1

(4.1)

Combining both yields the dynamics in the Vp’s:
Vp−1 = Rp

n∑
j=p

CiV̇i + Vp p ∈ [2, n].

Vin = R1

n∑
j=1

CiV̇i + V1

(4.2)

By defining the state x =
[
V1 V2 . . . Vn

]T ∈ Rn×1, input u = Vin
and output y = Vn, (4.2) can be rewritten in the implicit state space model:

Eẋ = Ax +Bu

y = Cx,
(4.3)

with B =
[
1 0 . . . 0

]T ∈ Rn×1, C =
[
0 0 . . . 1

]
∈ R1×n and E

and A∈ Rn×n:

E =


R1C1 R1C2 R1C3 . . . R1Cn

0 R2C2 R2C2 . . . R2Cn
0 0 R3C2 . . . R3Cn
...

...
...

. . .
...

0 0 . . . 0 RnCn

 ;

A =


−1 0 0 0 . . . 0
1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 . . . 1 −1

 .
E is a non-singular, upper-triangular matrix because of the non-zero

product of all diagonal elements. The implicit state space can be rewritten
in the standard form:
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ẋ =

Â︷ ︸︸ ︷
E−1Ax +

B̂︷ ︸︸ ︷
E−1B u

y = Cx.

(4.4)

This can be rewritten as a transfer function:

G(s) = C(sI − Â)−1B̂. (4.5)

Due to the choice of the input (Vin) and the output (Vn), a network
with n series subnetworks consists of n poles and no zeros. To obtain
the complete model, it means that n parameters need to be identified,
which is highly inconvenient for large n. In the subsequent analysis, three
models with a limited amount of parameters are fitted on the actual transfer
function using the minimization of the error between the Bode plots, as
described in section 3. First, the break frequency is determined from the
real transfer function based on the crossing point of the magnitude plot
with the −3dB line. One decade before and after the break frequency is
used to fit the models.

4.2. modeling of higher-order processes. The performance of the pro-
posed model is investigated by comparing it to the state-of-the-art models
found in literature.

(1) First Order Plus Dead Time (FOPDT)
H1(s) = K

τs+1 exp(−Ls): the widely used standard approximation.

(2) First Order Fractional Order Plus Dead Time (FO2PDT)
H2(s) = K

τsα+1 exp(−Ls) with α ∈]0, 2[: currently the state of the
art, using a fractional pole.

(3) First Order Plus Fractional Diffusive Delay (FOPFDD)
H3(s) = K

τs+1 exp(−(Ls)α) with α ∈]0, 1[: the proposed model.

Table 1. The parameters found by the optimization algo-
rithm for the FOPDT H1(s), the FO2PDT H2(s), and the
FOPFDD H3(s) models for n RC-networks in series.

n H1(s) H2(s) H3(s)
K τ L K τ L α K τ L α

4 0.99 7.67 1.27 0.99 8.21 1.16 1.05 1.00 5.91 1.51 0.78
5 0.99 11.33 2.00 0.99 12.32 1.85 1.05 1.01 8.46 2.47 0.77
6 0.99 15.78 2.88 0.99 17.40 2.68 1.05 1.03 10.58 3.94 0.73
7 0.99 20.93 3.90 0.99 23.33 3.64 1.05 1.03 13.54 5.54 0.72
8 0.99 27.00 5.08 0.99 30.03 4.76 1.04 1.04 16.92 7.39 0.71
32 0.99 388.61 77.24 0.99 423.00 75.50 1.02 1.05 232.65 118.21 0.69
64 0.99 1531.10 304.62 0.99 2033.30 286.98 1.04 1.06 846.00 511.13 0.67
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The optimization problem is prone to boundaries, namely for H1(s) and
H2(s), K is limited to a very narrow band around 1, as this is the static gain
of the process. For H3(s), K is not constrained, as explained in section 5.
For H2(s) and H3(s) α is constrained according to their respective intervals,
as presented before. All other parameters are not constrained. The results
of the optimization problem are given in Table 1 for several values of n.
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Figure 5. For n = 6 (a) the Pareto Front from the opti-
mization for H3(s), (b) the optimized Bode plots, (c) the
impulse response of the FDD for the given α and L, and (d)
the step responses are plotted.

To visualize the different steps of the methodology, some plots for n = 6
are given in Figure 5. In Figure 5a the Pareto front of the optimization
problem for H3(s) is presented to show the trade-off between minimizing
the error for the magnitude plot and the phase plot respectively. The Pareto
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front indicates for which weight q1 the trade-off between both objectives is
optimal [7]. This leads to an optimal Bode plot for each model such that
the error between the model and the real system’s Bode plot is minimal
for the combined objectives. These Bode plots are given in Figure 5b. The
optimal Bode plot leads to an optimal set of parameters for each model.
To evaluate the FOPFDD in time domain the FDD’s impulse response is
needed. Based on parameters {L,α, t} the impulse response is obtained
(see Figure 5c) using Algorithm 1. The step is found by calculating the
convolution of the step response of the first order part of the model with
the given impulse response (see (3.2)). The step responses of H1(s) and
H2(s) can be found using MATLAB R© with the FOMCON toolbox [26].
The step responses are given in Figure 5d.

To evaluate the performance of these three models a cumulative squared
error between the real system and the model’s step responses is calcu-
lated. To evaluate the model quality the error is represented by Jη for
η ∈ [30%, 63%, 90%]. Here, Jη is given by

Jη =
1

N
[Y(t)−H(t)] · [Y(t)−H(t)]T (4.6)

for t ∈ [0, tη] with η = Y (tη). The vectors Y(t),H(t) ∈ R1×N are the time
response vectors of the real process and a model’s step response respectively.
In Table 2 the modeling errors are given.

Table 2. The cumulative squared error averaged over the
samples Jη for t ∈ [0, tη] with η = G(tη) the percentage of
the end value.

n H1(s) H2(s) H3(s)
J30% J63% J90% J30% J63% J90% J30% J63% J90%

4 1.41e-4 2.37e-4 5.39e-4 8.88e-5 5.67e-5 4.83e-5 1.52e-5 3.22e-5 8.07e-5
5 1.36e-4 2.14e-4 4.77e-4 8.90e-5 5.84e-5 4.29e-5 9.05e-6 1.16e-5 2.77e-5
6 1.27e-4 2.10e-4 4.71e-4 8.25e-5 5.48e-5 4.15e-5 1.83e-6 3.88e-6 8.41e-6
7 1.23e-4 2.01e-4 4.49e-4 8.05e-5 5.37e-5 3.93e-5 7.57e-7 1.11e-5 1.62e-5
8 1.24e-4 2.37e-4 5.17e-4 8.01e-5 5.30e-5 3.62e-5 6.74e-7 1.95e-5 2.71e-5
32 1.09e-4 1.73e-4 3.87e-4 9.27e-5 6.82e-5 7.20e-5 3.22e-6 5.39e-5 7.44e-5
64 1.08e-4 1.74e-4 3.91e-4 6.96e-5 4.66e-5 3.22e-5 6.15e-6 8.26e-4 1.05e-4

5. Discussion

5.1. Physical meaning of the FDD. In this work a generalized diffusion
equation (2.9) is proposed, which gives rise to solution (2.17) including the
newly defined term the Fractional Diffusive Delay (FDD) or exp (−(Ls)α).
In Figure 3a, the impulse responses of the FDD term with L = 1 are given
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for different α based on a numerical simulation algorithm. From this figure,
a clear agreement with existing knowledge is found. In the case of integer
order α = 1 the dirac response is found. As α approaches 0.5, a diffusion
effect can be perceived, where the dirac peak is spread out in time. An effect
on the delay aspect of the impulse response can also be seen in Figure 3a.
Depending on α, the time before the system responds significantly, varies.
Also, the value of L has an effect on this delay effect, as can be observed
in Figure 3b. In conclusion, the FDD term is a function of α and L, which
allows to balance between a diffusive and a delay effect.

Many processes include such a combination of diffusion and delay. Es-
pecially a series of interconnected systems give rise to this phenomenon due
to the large number of poles. Some examples include transmission lines,
communicating water tanks, etc. Nowadays, literature resorts to an arti-
ficial construct to represent the time delay by naively shifting the entire
response in time. This leads to a discontinuity in the response, which is
artificial for a physical process. However, diffusion has shown to be the
missing link to explain the response’s gradual build-up in time. By com-
bining these two concepts, delay by shifting the response in time on the one
hand and diffusion with its continuous and gradual response on the other
hand, a time response that corresponds to a real physical response can be
obtained.

5.2. Model fitting. The method to minimize the error of the model’s
frequency response is an effective method to find the optimal set of param-
eters. The cost function consists of two objectives, while there are three or
four model parameters. A trade-off exists and, therefore, a Pareto front is
used to find the optimal weights between both objectives. In Table 1 some
preliminary trends are observed. Firstly, for all models L is expressed in
seconds and increases as the dead time of the real system increases. This
makes sense in models H1(s) and H2(s). Secondly, τ increases as well for
all models with increasing n. For the first two models there is a trade-off
between τ and L to obtain a good fit on both the magnitude and the phase.
In H3(s) this trade-off is managed mainly by α and partially by parameter
L, due to the nonlinearity introduced by α, which creates a coupling be-
tween phase and magnitude. Thirdly, for H3(s) parameter K is given more
freedom, as there is a clear trade-off between modeling the low versus the
high frequency behavior for this model. Nevertheless, the parameter stays
close to the actual static gain, which is 1. Finally, parameter α is used in
model H2(s) to have a better fit in the middle frequency range (see Table
2). But notice that only a small deviation of the integer case is needed
to improve the fit. The parameters of model H1(s) and H2(s) are similar.
This is also clear from Figure 5b for the case n = 6. For the other cases
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of n similar conclusions are drawn. Parameter α for model H3(s) deviates
more from the integer case. There is also a clear tendency that α decreases
for increasing n.

Table 2 gives a cumulative error for different partitions of the step
response. Three time sections are defined: A) the time needed to reach
30% of the final value, B) the time needed to reach 63% of the final value
and C) the time needed to reach 90% of the final value. It can be seen that
the novelty of the newly presented FOPFDD model lies within partition A,
where the third model clearly outperforms the first and the second model.
This can be understood from the detail in Figure 5d. As compared to
the artificial construction to model the delay in H1(s) and H2(s), which
leads to a discontinuity in the derivative of the step response, the proposed
model gives a gradual fit without the need to increase the number of model
parameters.

Finally, the new model is able to reduce a high-order model to a model
with only four parameters. It does not surprise the reader that this model
introduces an improvement compared to the model H1(s), which only uses
three parameters. However, an improvement is observed when comparing
model H2(s) with the new model, while the number of parameters is the
same. Also, a numerical solution is given to have a simple transition from
frequency to time domain.

5.3. Increasing number of subsystems. The theory states that for an
infinite number of subsystems, α has to be 0.5 as proven in [22]. However,
in reality an infinite number of subsystems cannot be obtained, unless a
theoretical construct such as a lumped-parameter model is used. In this
paper, the hypothesis is postulated whether a finite number of subsystems,
which is practically much more relevant, will lead to an α 6= 0.5, however,
no theoretical proof is provided. In Table 1, the number of subsystems is
increased to show the effect on the parameters. For the FOPFDD model,
the optimization algorithm clearly shows a trend of α going towards 0.5.
Furthermore, as expected, the delay becomes larger with increasing L.

6. Conclusion

This work presents the novel First Order Plus Fractional Diffusive Delay
(FOPFDD) model, which includes the innovative term, Fractional Diffusive
Delay (FDD), expressed as exp (−(Ls)α). The novelty lies in the fact that
the argument of the exponential function contains a fractional derivative
sα with α ∈ R, α ∈]0, 1[. The FDD is analyzed in frequency domain and
a full discussion of the inverse Laplace transform of FDD is also provided,
which is innovative in the field of fractional calculus. The new FOPFDD
model is tested on high-order RC circuits to indicate the advantages of this
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new model fitting compared to state-of-art models including both integer
order and fractional order variants. This work elaborates the theoretical
background of the time response of the FDD and an algorithm is developed
to overcome numerical difficulties. These time domain calculations of the
FDD expose a link with delay and diffusion and are unique, as this has never
been done before. The discussion of the results shows the added value of
the FDD term in shaping time responses. The new model outperforms
the state-of-art models, especially at the onset of the system’s response.
This property makes the FOPFDD model ideal to model delay dominant
systems with an increased accuracy.

However, the authors are aware that this is only a first step in the
direction of fully understanding the behavior of the Fractional Diffusive
Delay. An important step is to reveil more properties of this term, such
that the numerical approximation of the impulse response can be improved,
especially with regard to time efficiency. With regard to solidifying the link
between the FDD and the generalized heat diffusion equation, a proof needs
to be established that if the number of discrete subsystems connected in
series goes to infinity (n → ∞), means that α converges to 0.5. From
the modeling perspective, a proper methodology to estimate the model
parameters based on a measured time response would improve the model
accuracy. A more profound link between the model and parameters and
the behavior in time domain is crucial.
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