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� The VMS outperforms the passive state of the art controllers.
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Abstract

Mitigating vibrations in engineering structures is of key interest, as they can lead to

failure and/or discomfort. However, in some cases it is not feasible to actuate all the

structure’s degrees of freedom, which makes vibration mitigation difficult. In this work,

we investigate the addition of a single one-degree-of-freedom virtual mechanical system

(VMS), as an active controller, to attract and mitigate the energy from an impulse

load on the structure. To challenge the controller, an actuation point is chosen furthest

away from the impact location. As it is implemented virtually, the coupling between

the structure and VMS can be chosen freely. It is found that a skew-symmetric coupling

generates a gyroscopic force that enables control over the structure’s mode shapes. Using

this, the controller is tuned to achieve a beating phenomenon that attracts the vibration

energy to the actuation location. A nonlinear damper, based on the slope of the envelope

of the virtual velocity state, avoids reflection of energy to the structure and dissipates

this unwanted energy. Furthermore, the virtual damper’s robustness to timing errors

is investigated: damping too soon means an incomplete energy transfer to the VMS,

damping too late leads to return of energy to the building. The tuning strategy of the

VMS is applied to a 4 DOF and 60 DOF building benchmark. For comparison, a tuned

mass damper (TMD) and a nonlinear energy sink (NES) are tuned as well. The VMS

succeeds in decreasing the settling time significantly in both cases, while the performance

of the passive TMD and NES is rather limited for this specific configuration.

Keywords: energy transfer, vibration control, active control, high-rise building,

underactuated control
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1. Introduction

Buildings are prone to vibrations due to ground displacements, such as earthquakes

and landslides or due to forces acting on the floors of a building, such as vibrating

machinery present in the building and wind loads [1, 2, 3]. These vibrations lead to

accelerations and deformations which can cause structural damage or discomfort for the

building’s residents [4, 5]. To study the effect of vibrations on a structure, two types of

excitation are common: first, a periodic load, consisting of a single frequency or a limited

number of frequencies, and, second, an impulse shock, which excites multiple natural

frequencies. The former is perceived as an issue if a resonance frequency of the structure

is approached. The latter triggers a number of natural frequencies simultaneously, thus,

demanding a higher bandwidth in the used controllers.

Mitigating the vibrations in the structure is primordial to avoid its harmful effects. A

first methodology is to modify the structure such that the (anti-)resonances are shifted

to more feasible frequencies [6, 7, 8]. However, its capabilities are rather limited due to

design, space and material restrictions. Part of it can be solved by creating a virtual

structural modification using (semi-)active control [9, 10]. A second solution is to use

passive vibration absorbers [11, 12]. A passive structure is added to match the eigenfre-

quency of the main structure, such that the energy is transferred to and dissipated in

this additional structure. The disadvantage is that it can only be tuned to one specific

frequency and two new resonances are created. The Nonlinear Energy Sink (NES) uses

the nonlinearities (e.g. cubic springs) to circumvent this limitation and is able to capture

multiple frequencies. Its robustness to initial energy is however rather limited. Also, the

construction of nonlinear passive components can be tedious, even for simple nonlinear

characteristics. A way to circumvent the latter is to use semi-active vibration absorbers

[13, 14], the relative position, velocity and/or acceleration of the main system and vibra-

tion absorber are fed back to alter the stiffness and damping properties of the vibration

absorber in real-time. The biggest advantage of passive and semi-active absorbers is that

they do not affect the stability of the controlled systems. Hybrid vibration absorbers use
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an actuator to execute a control law in parallel with a passive device. They are able to

mimic passive configurations beyond the restrictions of a physical realisation [15, 16].

An active controller uses information about the state of the main system that is fed

to a control law. An actuator then exerts an action on the structure as dictated by the

controller. The freedom granted by active control, due to the programmatic introduction

of any complex control law, allows for an increased flexibility over the passive case [17].

This often leads to rather mathematical controllers, that are difficult to tune intuitively.

Also, because energy is added to the system, via the actuator, it is important to take

stability into consideration. An major drawback for (semi-)active and hybrid controllers

is that they consume energy.

Interfering with the building’s displacement is necessary, but it is not always feasible

to interface with the structure on an arbitrary location. Due to design considerations, the

most optimal location to damp vibrations might not be available for actuation. Therefore,

it is useful to research underactuated control, where the number of controlled coordinates

is less than the total amount of degrees of freedom (DOF). This is also beneficial to the

complexity of implementation: more active control loops require more expensive sensors

and actuators, more energy, and more complex controller design.

In this work, the aforementioned problems are tackled using an active control law

that is inspired by the passive vibration absorber technology, as the tuning of these con-

trollers is well understood. The displacement of a building’s floor is read by a computer

and is used to excite a virtual mechanical system (VMS). The generalised coordinates

of the VMS are then used to exert a force on said floor. The added value compared to

the passive solutions is that the coupling between the building and the additional VMS

should not depend on the relative movement between both structures, but can be chosen

arbitrarily. This gives the advantage over passive and semi-active vibration absorbers

that the controller should not be placed at the location with the highest displacement,

which is often the top floor. Moreover, it allows to implement an absorber of any com-

plexity with any nonlinear component [18]. The goal is to transfer the energy as fast as

possible, using the beating phenomenon, to the VMS, where nonlinear damping is used

to dissipate the unwanted energy. No nonlinear stiffnesses are introduced, which avoids

the creation of bifurcations. This allows to rely on linear tools.
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To check its capabilities, the most challenging scenario is researched: a shock load

is applied to the top floor and only the first floor can be measured and controlled. In

Section 2 the methodology for a n DOF building is explained. First, the virtual mechan-

ical structure is introduced, next the stability, based on Lyapunov’s direct method, is

proven, and finally, a tuning strategy based on the modal decomposition of the building

is explained. In Section 3 and 4 the methodology of Section 2 is applied to a 4 DOF

and 60 DOF building respectively. For each benchmark, a comparison is made with two

passive vibration control devices, the Tuned Mass Damper (TMD) and Nonlinear Energy

Sink (NES). These devices consist of a mass connected to the structure through a damper

and (non)linear spring. In Section 5 the results and the methodology are discussed. And

finally, the conclusions are formulated in Section 6.

2. Methodology

This paper investigates vibration mitigation in building structures. The model that

is considered is depicted in Figure 1. The force that causes the vibrations is represented

by an impulse on the nth DOF, while the controller only works on the first DOF. This

is the most challenging case as these locations are the furthest apart. For this reason,

the focus lies on the energy transfer from the structure to the VMS, where it can be

dissipated.

(a) (b)

Figure 1: (a) Lumped mass building model; (b) Equivalent mass-spring-damper model
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2.1. Virtual mechanical system

An active controller is proposed which acts on the system through an actuator. The

force exerted by the controller is computed by evaluating the dynamics of a virtual

mechanical system (VMS). As it is an active controller, the only limitations on the control

policy are imposed by the actuator and the control effort. There are no restrictions on

the shape of the control signal, in contrast to the passive case. The dynamics of the

controlled structure are described by

M q̈+ Cq̇+Kq = Fext + Fc, (1)

where M > 0, C > 0 and K > 0 ∈ Rnp×np are respectively the inertia, damping

and stiffness matrix of the building structure, q ∈ Rnp are the generalised coordinates,

Fext ∈ Rnp is the external force causing the vibrations

Fext =
[
0 0 · · · 0 δ

]T
(2)

and Fc ∈ Rnp is the force imposed by the controller with

Fc =
[
fc1 0 · · · 0 0

]T
. (3)

The freedom obtained by the use of active control, allows us to choose the force by the

controller Fc proportional to the velocity of a VMS. After all, forces that are proportional

to velocity can have an effect on the damping and on the mode shapes of the system,

according to [19]. The dynamics of the combined system can be expressed asM q̈+ Cq̇+Kq = Fext − νż

D0z̈+
∂F
∂ż (ż) +K0z = −N q̇

, (4)

where z ∈ Rnc are the generalised coordinates of the VMS, the coupling terms ν ∈ Rnp×nc

and N ∈ Rnc×np , can be expressed as

ν =


ν1 ν2 · · · νnc

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 N =


N1 0 · · · 0

N2 0 · · · 0
...

...
. . .

...

Nnc 0 · · · 0

 , (5)

and D0 > 0 ∈ Rnc×nc , ∂F
∂ż (ż) ∈ Rnc and K0 > 0 ∈ Rnc×nc are respectively the inertia,

damping term and stiffness of the VMS.
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2.1.1. Stability

To prove stability, Lyapunov’s direct method is used. A straightforward Lyapunov

candidate is the Hamiltonian. Due to the coupling, the Hamiltonian needs to be carefully

defined. After all, the coupling can contribute to conservative forces, and should thus be

included in the expression of the kinetic and/or potential energy of (4).

System (4) can be written in matrix form:M 0

0 D0

 v̈ +

 Cq̇

∂F
∂ż (ż)

+

 0 ν

N 0


︸ ︷︷ ︸

R

v̇ +

K 0

0 K0

v =

Fext

0

 (6)

with v = [qT , zT ]T . The second term are the non-conservative damping terms. At

this point, it is not clear if matrix R contains (non-)conservative forces. In [19] it

is proposed to separate the symmetric and skew-symmetric parts of the velocity- and

position-dependent terms. The symmetric (S) and skew-symmetric (SS) part are given

by

RS =
1

2
(R+RT ) =

1

2

 0 ν +NT

νT +N 0

 , (7)

RSS =
1

2
(R−RT ) =

1

2

 0 ν −NT

N − νT 0

 . (8)

The hypothesis is that the skew-symmetric part will contribute to the conservative forces

and should thus be included in the kinetic energy. The kinetic energy can be found from

the inverse Euler-Lagrange formalism:
d
dt

∂TR

∂q̇ = 1
2 (ν −NT )ż

d
dt

∂TR

∂ż = 1
2 (N − νT )q̇

(9)

The kinetic energy T of the controlled system then becomes

T =
1

2
q̇TM q̇+

1

2
żTD0ż+

1

2
q̇T (ν −NT )z+

1

2
qT (NT − ν)ż. (10)

The Hamiltonian is given by

H =
∑

α=q,z

pαα̇− L (11)
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with L = T − V the Lagrangian, V the potential energy, pα = ∂T
∂α̇ the generalised

momenta. This results in

H =
1

2
q̇TM q̇+

1

2
żD0ż+ V (12)

Notice that the coupling does not contribute to the Hamiltonian.

For Lyapunov’s direct method, global asymptotic stability is guaranteed if the fol-

lowing is fulfilled:

1. the Lyapunov candidate and its gradient is continuous,

2. the Lyapunov candidate reaches a minimum in the equilibrium point,

3. the time derivative of the Lyapunov candidate along the solutions of the system is

smaller than zero, except for the equilibrium point.

The first condition is trivially satisfied. The second condition is examined using the

Hessian. First, it is noticed that H ≥ V , so it is sufficient to examine the potential

energy. The Hessian of the potential energy function is given by

Hf =

K 0

0 K0

 . (13)

A minimum is reached if Hf > 0. The matrix is block diagonal, so K,K0 > 0 should be

satisfied. Hence, condition 2 is satisfied. The third condition results in

dH
dt

= −żT (νT +N)q̇− q̇TCq̇− ∂F

∂ż
(ż)T ż. (14)

As C > 0, the second term is always smaller or equal to 0. The other two terms

depend on the tuning of the controller. The first term is not trivially smaller or equal to

0, but can be omitted by choosing

N = −νT . (15)

Notice, that RS ≡ 0 in this case. This accords with the finding in [19] that the symmetric

part contributes to a non-conservative force. Now, ∂F
∂ż (ż)

T ż > 0 if ż ̸= 0 needs to be

satisfied. This leads to global asymptotical stability.

2.1.2. Single degree of freedom controllers

The main research questions in this work is whether the active VMS controller, with

its unique coupling, can be advantageous in attracting and mitigating vibrations, using a
7



single actuation point. To evaluate its performance it is compared to the passive state-of-

the-art: tuned mass dampers (TMDs) and nonlinear energy sinks (NESs). Up until now,

we have generalised the controller to have dimension nc ∈ N0. However, to show and

analyse the performance of the VMS controller it is sufficient to simplify the controllers’

dimension to one from now on. This will allow to capture the most dominant behaviour

of the system, hence, showing its working principle clearly. Furthermore, the passive

solutions often resort to adding systems with one degree of freedom. Therefore, it is

appropriate to compare a VMS controller with nc = 1 with a passive controller with one

generalised coordinate. Based on this, the controller’s dimension is from now on nc = 1,

unless stated otherwise.

2.1.3. Tuning

In this section, the focus lies on creating a heuristic to tune the controller parameters

to facilitate energy transfer to the VMS. Without loss of generality, the inertia of the

controller D0 can be set equal to one. The damping term in the controller is not yet

considered.

Under the condition that the behaviour of the structure, subjected to an impulse load,

can be approximated by a limited number of dominant modes, a modal decomposition

can be conducted to gain insight in the dominant behaviour.

The eigenfrequencies ωi and eigenvectors ei of the undamped n DOF system are

calculated such that

(K − ω2
iM)ei = 0, (16)

where ω1 < ω2 < ... < ωn. With these eigenvectors, which have been mass-normalised,

the modal matrix E is formed:

E =
[
e1 e2 ... enc

]
. (17)

The modal decomposition is achieved using the coordinate transformation q = Ep.

The system model in modal coordinates p, premultiplied with ET becomes

ETMEp̈+ ETCEṗ+ ETKEp = ETNT ż+ ETFext (18)

⇐⇒ Ip̈+ Cpṗ+ diag(ω2
i )p = ETNT ż+ ETFext (19)
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with Cp a diagonal matrix in this work.

The dynamics of the dominant mode p1, corresponding to eigenfrequency ω1, are

extracted, while assuming the other modes are present to a lesser extent and can be

neglected. This results in

p̈1 + cpṗ1 + ω2
1p1 = αN1ż + βδ, (20)

where cp = Cp[1, 1], α = E[1, 1], β = E[np, 1]. Notice that the number of dominant modes

that are being considered, determines the dimension of the controller. The controller

model in modal coordinates is

z̈ +K0z = −αN1ṗ1 (21)

Where, once again, the approximation is only valid when p1 is the dominant mode of the

original system. Finally, the equations describing the approximated system in matrix

form are p̈1
z̈

+

 cp −αN1

αN1 0

ṗ1
ż

+

ω2
1 0

0 K0

p1
z

 =

βδ
0

 . (22)

This simplified system encompasses the dominant behaviour of combined system,

consisting of the np DOF structure and the 1 DOF controller. Its characteristic equation

is investigated to gain insight in the controller parameters

det

λ2 + cpλ+ ω2
1 −αN1λ

αN1λ λ2 +K0

 = 0 (23)

Specific choices of K0 and N1 allow the poles of (20) and (21) to coincide. If the

controller parameters are chosen as

K0 = ω2
1 , (24)

N1 = ± cp
2α

, (25)

the characteristic equation (23) reduces to

(λ2 +
cp
2
λ+ ω2

1)
2 = 0. (26)

For the original combined system this cannot be guaranteed due to the influence of

other modes. However, this choice for the parameters does ensure that the dominant

pole with frequency fp lies close to the pole, with frequency fc, of the controller.
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These poles cause a beating phenomenon to occur, which allows energy to transfer

from the structure to the controller. The beating frequency of the dominant mode is

given by

fbeat =
|fp − fc|

2
, (27)

which means that shifting the poles closer together implies a slower energy transfer, and

separating the poles implies a higher beat frequency.

Depending on the requirements of a certain application, further optimisation of N1

is possible, where expression (25) can offer a suitable initial value.

2.1.4. Damping

The objective of adding nonlinear damping to the controller, is to take advantage of

the beating phenomenon. More specifically, once the energy has been attracted to the

VMS, it must be dissipated. An important consideration in selecting the damping char-

acteristic, is that energy transfer towards the VMS is favourable, while energy transfer

in the other direction should be inhibited.

The ideal scenario is that no damping is present when energy is being attracted to the

controller, so all energy can be transferred and then dissipated before it could return to

the system. In simulations, this can be achieved with a switch that adds a large damping

term once the values of the local maxima of the responses start decreasing. This is the

moment that the energy starts flowing back to the structure. As an active controller is

used, this can straightforwardly be calculated online.

Damping as a function of the envelope of ż, denoted as ¯̇z, is proposed. Figure 2 is

an example of such a characteristic. The hysteresis facilitates energy attraction to the

controller while impeding the reverse path.

Figure 2: Possible damping characteristic
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It should be noticed that the analysis of an appropriate and performant nonlinear

damping function is a complex matter, and should be researched in detail. However, this

is out of the scope of this work. An analysis on the robustness of the damping is done

in the example of the 4 DOF building.

The next sections describe the implementation of the presented control method on a

4 DOF and 60 DOF building structure.

3. Example - 4 DOF building

Let us consider the case where an impulse load, that introduces vibrations, is applied

at q4, the generalised coordinate of the top floor, while the active controller is attached

to q1, the furthest from the energy source. This load is equivalent to setting an initial

condition q̇4, chosen 1m/s here, while all other initial velocities are zero. First, the tuning

methodology of Section 2.1.3 with the VMS will be applied to the 4 DOF building. Next,

a TMD and NES will be tuned for this system, as they represent the state-of-the-art in

(passive) vibration control of buildings.

The matrices of (1) read

M =


m 0 0 0

0 m 0 0

0 0 m 0

0 0 0 m

 , m = 5.706 [kg], (28)

C =


7.079 −2.039 −0.365 −0.177

−2.039 6.713 −2.216 −0.542

−0.365 −2.216 6.536 −2.581

−0.177 −0.542 −2.581 4.497


[
N

s

m

]
, (29)

K =


2k −k 0 0

−k 2k −k 0

0 −k 2k −k

0 0 −k k

 , k = 11923

[
N

m

]
. (30)

Note that the damping matrix C corresponds to a damping ratio of 1%.
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3.1. Virtual mechanical system

It can be observed from the impulse response that the system has one dominant

mode, being the lowest frequency mode. The VMS is a one DOF system connected to

the building at floor 1. The following model describes its dynamics:

z̈ +
∂F

∂ż
(ż) +K0z = −Nq̇, (31)

where N =
[
N1 0 0 0

]
. Notice that the mass is chosen to be 1kg without loss of

generality, as mentioned before. The parameters that need to be tuned are K0 ∈ R,

N1 ∈ R and the damping term ∂F
∂ż (ż). As described is Section 2.1.3, the VMS is first

considered without damping (∂F∂ż (ż) ≡ 0).

Virtual stiffness K0 is chosen in order to match the undamped eigenfrequency of

the VMS to the dominant frequency of the original system (see (24)). The frequency

spectra show that the dominant frequency is the same for each DOF of the structure,

namely ωdom = 15.88 rad/s, corresponding to mode 1. From which follows that K0 =

ω2
dom · 1kg = 252.03N

m .

3.2. Modal system approximation

In Figure 3 the root-loci of the controlled system’s (18) poles are considered where

N1 is varied and K0 = ω2
1 . As expected, the branches corresponding to the dominant

poles (closest to the imaginary axis) first approach and then diverge. The value of N1

where the poles are the closest is estimated using the modal approximation.

The simplified model for the 4 DOF system and controller computed using the modal

method according to Eq. (22) is

p̈1
z̈

+

 cp −αN1

αN1 0

ṗ
ż

+

ω2
1 0

0 ω2
1

p1
z

 =

βδ
0

 , (32)

where ω1 = 15.88, cp = 0.33, α = 0.046 and β = 0.30.

To confirm that the simplified system returns a valid estimate for the dominant

behaviour, its poles for varying N1 are compared with to the original ones. This is

depicted by the root-loci for N1 in Figure 4, where the black dots represent the poles

of the real controlled system (18), and the blue line shows the poles of the simplified

controlled system (32), both in function of N1. In contrast to the root-loci of the original
12



(a) (b)

Figure 3: Evolution of poles with varying N1 for the 4 DOF case; (a) Evolution of poles with varying

N1. (b) Close up.

system, those of the simplified system (blue) coincide for a certain N1 = 1.6635, found

with (25) (Fig. 4, blue cross). In the original controlled system, this specific value for N1

corresponds to the situation that the two black root-loci are close to each other (Fig. 4,

black crosses). This confirms that the simplified system is a good estimate of the actual

system.

(a) Dominant poles for N1 from 0.01 to 100 (b) Close up around N1 = 1.6635

Figure 4: Comparison of dominant poles with varying N1 for original system and simplification for the

4 DOF case study.
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The impulse response of the generalised coordinate of the top floor q4 for this N1 can

be found in Figure 5a. A similar plot can be obtained for the other floors. A beating

phenomenon can be observed: the energy is transferred from all system coordinates qi

to the virtual coordinate z, and vice versa.

(a)

(b)

Figure 5: Impulse responses of the controlled system at q4 without controller damping for the 4 DOF

case; (a) N1 = 1.6635 (b) N1 = 5.9467.

From Figure 5a, one can observe that around t = 12.5s, approximately all energy has

been transferred to the controller. This behaviour, if appropriate damping is added, can

be exploited to bring all coordinates to a standstill as fast as possible.

In this work, the performance of the controller will be evaluated based on the 2%-

settling time of each generalised coordinate. This is the amount of time during which the

amplitude of a generalised coordinate’s oscillation reduces with 98%. According to (27),

a faster beating frequency and, thus, a faster settling time can be achieved by further

separating the poles. Figure 6 demonstrates that increasing N1 can increase the beating
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Figure 6: Eigenfrequencies of the dominant modes of the controlled 4 DOF system without damping in

function of N1.

frequency, which results in a higher rate of energy transfer. The two frequency branches

of Figure 6 originating at ω1 for N1 = 0 is typical for a gyroscopic, mechanical system.

This property is created due to the skew-symmetric coupling of the main systems and

the controller. However, an optimal value for N1 exists and, by optimising the settling

times of the generalised coordinates of the structure, a value of 5.9467 is found. The

time response for this case is depicted in Figure 5b. To understand the trade-off, we

refer to Figure 5. When comparing the impulse responses of N1 = 1.6635 (Figure 5a)

and N1 = 5.9467 (Figure 5b) it can be seen that in the latter the energy is transferred

more quickly, but not completely, i.e. when the envelope of z is maximal, the amplitudes

of q are not zero. This can result in the undesirable situation that more than one beat

period is required to reach the 2% settling time.

3.3. Nonlinear damping

Subsequently, the ideal damping term is added to the simulations:

∂F

∂ż
(ż) = Cz(ż)ż, (33)

where

Cz(ż) =

ϵ, t ≤ tswitch

10, t > tswitch

(34)
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Here, ϵ is a small positive real number to abide to the stability criteria, the value of

the damping constant after tswitch is chosen to decrease the settling time of the virtual

coordinate as fast as possible, tswitch is the instant at which the amplitude of a peak of ż

is lower than the previous one. This means the envelope of ż is decreasing and the energy

is starting to flow back to the structure. Notice that the damping function (34) is an

oversimplified version of the damping function in Figure 2, however, the overall rationale

is similar. This damping term complies with the stability conditions presented in Section

2.1.1. The evolution of the damping factor Cz and resulting behaviour of the combined

system is presented in Figure 7a in the ideal case. However, in reality such an abrupt

change in damping force is not feasible, as it would require the actuator to stop its inertia

immediately. So, a less ideal, but more feasible solution is to ramp up the damping force

gradually, which can be seen as introducing an actuator rate limit effect, as shown in

Figure 2 [20]. The time derivative of the envelope of ż is inversely proportional to the

damping force, until the time derivative is zero and the damping reaches its maximum.

This is achieved using a sigmoid-function and is shown in Figure 7b. The damping term

is given by

Cz(ż) =
10

1 + exp (−10(t− tswitch))
(35)

There is a clear difference in the first period after the damping is activated. The

amplitude of the virtual coordinate is higher for the sigmoid damping compared to the

ideal case. For the remainder of the time signal the result is similar.

(a) (b)

Figure 7: Evolution of Cz and time response of damped combined system in (a) the ideal case, and (b)

with a sigmoid damping function to mimic a more realistic damping force.

The quality of the damping force depends on the estimate of the envelope of ż. As the
16



damping force reaches its maximum too soon (see Figure 8a), the energy transfer from

the building to the VMS is not complete yet, and energy remains in the building. If the

damping force reaches its maximum too late (see Figure 8b), part of the energy will flow

back to the building, increasing the settling time. But in both cases, the response is still

acceptable. A further discussion on the quality of the estimate of the envelope can be

found in Section 5. In this context, it can be remarked that the NES often has a residual

energy remaining in the main system as well, as the activation threshold is crossed when

the energy is removed from the main system. There, one relies on the internal damping

of the main system to remove this residual energy. This is also the case for the early and

late damping forces in Figures 8a and 8b respectively.

(a) (b)

Figure 8: Evolution of Cz and time response of damped combined system in (a) the ideal case, and (b)

with a sigmoid damping function to mimic a more realistic damping force.

3.4. TMD/NES

Here, the tuning of the two passive control devices, TMD and NES, is explained.

They represent the state-of-the-art in vibration control of buildings and have shown to

be very performant. However, they have their drawbacks, which can be circumvented by

using active control. One DOF passive controllers are considered, as they are common,

and result in a fair comparison with the one DOF VMS controller.

The TMD consists of a mass, linear damping and a linear spring, while the NES has

the same components except for a nonlinear spring. The TMD is tuned such that its

own natural frequency is close to a natural frequency of the structure, and such that

this natural frequency is critically damped, meaning that it is optimised for settling time
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under transient loads [21, 22]:

µi = maei(ℓ)
2 ω2

a =
ka
ma

=
ω2
i

1 + µi
ζa =

ca
2maωa

=

√
µi

1 + µi
(36)

wherema, ka, ca are the TMD’s mass, stiffness and damping, and ei(ℓ) the eigenvector

component of mode i at the connection point of the TMD ℓ. Here, it is opted again

to attach the TMD to the first floor, ℓ = 1. Usually, a mass ma is proposed, which

is typically chosen as 0.5% of the total mass of the building, and, like for the VMS

controller, the TMD’s eigenfrequency is close to the most dominant eigenfrequency of

the structure, which is the first mode. From this, the required ka and ca are determined.

The numerical values for the components of the TMD can be found in Table 1.

Table 1: Parameters of the TMD/NES for the 4 DOF building.

ma[kg] ca[Ns/m] ka[N/m] cna[Ns/m] kna[N/m]

0.1141 0.1167 28.7020 0.2265 6.631 · 104

The NES is the state-of-the-art passive vibration absorber that is able to self-tune to

the eigenfrequencies through its nonlinear spring. Usually, this spring is of a hardening

polynomial kind, here x3. When attached to an MDOF structure under impulse load,

the NES engages in Resonance Capture Cascade (RCC) where it transfers and dissipates

the several eigenfrequencies from high to low frequency [23] or from low to high frequency

[24]. This is in contrast to the TMD which only targets one eigenfrequency. However,

while the TMD has viscous damping, meaning that it damps vibrations exponentially, the

NES will always leave a residual amount of vibration energy. To design the NES, the mass

of the nonlinear absorber is here again chosen as 0.5% of the structure’s mass. The NES’

mass is attached to the first mass through a cubic polynomial stiffness (kna(qna − q1)
3)

and linear viscous damping (cna(q̇na − q̇1)). The NES’ stiffness and damping coefficients

are chosen such that 10% of the energy remains of mode 1 for an impulse load at q̇4 = 1m
s .

The parameters are tuned as follows

ca = 0.125maωi kna = 0.205
maω

4
i

ei(ℓ)2ṗi(0)2
(37)

where i = ℓ = 1 and ṗi(0) is the initial modal speed of mode i. The numerical values can

be found in Table 1. For more details on this tuning methodology, the reader is referred
18



to [25].

 

Figure 9: Time response of relative coordinate of NES

The RCC is clearly visible in Figure 9, which shows the time vector of the relative

coordinate of the NES. The RCC is able to capture two vibration modes: during the

first half second, the absorber vibrates with the second eigenfrequencies, and then from

0.5s to 6s with the first eigenfrequency. The envelopes of the time responses of q4, the

generalised coordinate with largest amplitude and furthest from the vibration absorbing

systems, are plotted in Figure 10 for the different vibration control strategies. This

simplified representation of the time signal allows to analyse the decay of the energy. It

is clear that both the uncontrolled system and the structure with the TMD experience an

exponential decay. The building with the NES and VMS do not have a purely exponential

decay. Two different zones can be discerned: between 1s and 5s a faster decay is observed,

after that a slower decay can be seen.

The 2%-settling times for each vibration mitigation strategy can be found in Table

2. Notice that the VMS controller is able to decrease the settling time significantly. The

TMD and NES only show a small improvement compared to the VMS controller.

3.5. Robustness

The robustness of these vibration mitigation techniques is reviewed by investigating

their capability to deal with model errors and differences in the magnitude of the load.

The model errors are simulated by changing the eigenfrequency of the structure, more
19



Figure 10: The 4 DOF building: positive envelopes of the impulse response for q4 for different absorbers.

Table 2: 2%-settling times [s] of the top floor q4 for the 4 DOF building

original system VMS (N1 = 1.6635) VMS (N1 = 5.9467) TMD NES

q4 24.25 11.81 10.01 14.54 22.88

specifically by adjusting its mass with ±10% and changing the damping accordingly to

keep the damping ratio at 1%. The resulting 2%-settling times are visualised in Figure

11a. To take into account the effect of the shifting eigenfrequencies due to changing

mass on the settling time, the amount of fundamental periods κ until the 98% amplitude

decrease of the top floor is reached, is plotted on the y-axis and the relative change in

mass on the x-axis.

The VMS controllers are performing the best around zero mass change, but when the

mass is changed more drastically, the settling time increases. This can be expected as

the VMS is made sensitive to a specific frequency. This is the case for the TMD as well.

From ±1.5% mass change the performance of the VMS is even slightly worse than for the

TMD, but they tend to keep a similar trend throughout the mass variation. This means

that the TMD is also able to create sufficient energy transfer from the top floor to the
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bottom floor. The NES does barely better than the uncontrolled situation and the mass

variation has only a limited effect on its performance. This poor result for the NES can

be explained by its location. The energy in the bottom floor is the lowest for the first

vibration mode, so the activation energy threshold is almost not reached, resulting in a

large amount of residual energy.

(a)

(b)

Figure 11: Robustness of the controllers for the 4 DOF case. (a) Number of fundamental periods until

98% energy dissipated for different vibration control strategies with model errors. (b) Comparison of

performance of different vibration control strategies for different magnitudes of the load.

The influence of the load is also investigated and the results are depicted in Figure

11b. One can observe that the performance of the NES is susceptible to changes in the

magnitude of the load, which is expected. From an initial velocity of q̇4 = 2 · 10−1m/s
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the settling time improves slightly, but from q̇4 = 2 · 101m/s the performance worsens

rapidly, until it even gets equally worse than the uncontrolled system at q̇4 = 102m/s. In

contrast, the TMD and VMS demonstrate consistent settling times. They are unaffected

by the size of the force. This advantage of the TMD compared to the NES is also present

in the VMS controller.

4. Examples - 60 DOF building

In the 4 DOF building example, the TMD and VMS are able to transfer the energy

from the top floor to the lowest floor. In this example the energy transfer path’s length

is increased significantly to investigate whether this effect remains valid for a 60 DOF

building. Let us consider the case where an impulse load, that introduces vibrations,

is applied at q60, while the VMS controller is attached at q1, again the furthest from

the energy source. This load is equivalent to setting the initial condition q̇60 = 1m/s,

while all other velocities are 0. First, the tuning methodology of Section 2.1.3 with the

VMS will be applied to the 60 DOF building. Next, a TMD and NES are tuned for this

system, as they represent the state-of-the-art in (passive) vibration control of buildings.

The model is found in [26], which is a benchmark system. The matrices of (1) are

given by

M = 1 200 000 · I60 [kg] (38)

K =



2k −k 0 . . . 0 0

−k 2k −k . . .
...

...

0 −k 2k . . . 0 0
...

...
...

. . . −k 0

0 . . . 0 −k 2k −k

0 . . . 0 0 −k k


,with k = 2 200 000 000

[
N

m

]
(39)

A damping ratio of ζ = 0.5% is assumed. This allows to calculate C = E−T 2ZΩE−1,

with E the mass-normalised eigenvectors, Z = ζ · I60, and Ω = diag(ωi). The five lowest

(most dominant) eigenfrequencies can be found in Table 3.

From the impulse response of the 60th floor, it can be seen that the first eigenfrequency

dominates, so only this mode is considered in the remainder of the analysis.
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Table 3: First five eigenfrequencies [rad/s] of the 60 DOF building.

ω1 ω2 ω3 ω4 ω5

1.1117 3.3342 5.5546 7.7712 9.9825

4.1. Virtual mechanical system and modal system approximation

As we only consider the first mode of the structure to design the controller (see above),

the dimension of the controller will be nc = 1. Hence, the controller structure is similar

to the example of the 4 DOF building with N =
[
N1 0 . . . 0 0

]
∈ R60. The virtual

stiffness is K0 = ω2
1 , as in (24), and from (25) N1 = 1289.9730 is found. This choice

for N1 succeeds in placing the new pole pair, which is introduced by adding the VMS

controller to the system, close to the dominant pole pair of the main system (see Figure

12a). Hence, one can confirm that this method remains valid for large structures.

From Figure 12b it can be seen that beating occurs between the top floor and the

controller’s coordinate, even though the movement of floor one q1 is very small. The

controller manages to attract just about all energy from q60 to z. The energy transfer

of the first mode is maximal around 370s. Parameter N1 could be further optimised as

placing the poles in the real system further apart leads to a faster beating frequency,

but there is a trade-off. The minimal amount of energy that remains in the top floor is

increasing as well. This is depicted in Figure 13. However, no further optimisation is

done at this point, it is just meant to demonstrate the presence of a trade-off.

4.2. Nonlinear damping

The same damping function (34) is used in the 60 DOF case. This leads to a 2%-

settling time of the top floor of 343.0336s, which is a decrease of 51.16%. With the

damping in place, N1 can be further optimised. An optimisation is performed to minimise

the settling time of q60. Notice that the internal damping of the function is rather low

and does not aid the mitigation of vibrations as much as in the 4 DOF case. For this

reason, the percentual change of N1 is limited and there is less design freedom. The

optimisation leads to N1,opt = 1.38 · N1 = 1780.1628. The resulting envelopes of the

time responses of the top floor can be found in Figure 14. The performance of the VMS

controller, both with N1 and N1,opt is compared to the original system. The 2%-settling
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(a)

(b)

Figure 12: (a) Comparison of dominant poles with varying N1 for the original 60 DOF system and the

modal approximation. (b) Impulse response of top and bottom floor and the controller coordinate for

the controlled 60 DOF system. There is no damping present in the controller.

times for these cases are 343.0336s, 288.6971s, and 702.4131s respectively. The optimised

controller achieves a reduction of 58.90%.
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Figure 13: Trade-off between speed and amount of energy transfer for the 60 DOF system in function

of N1.

Figure 14: Impulse responses of the top floor for the original 60 DOF system and the systems with the

VMS controllers.

4.3. TMD/NES

The same tuning methodology is used as in the 4 DOF case. We refer to Section 3.4

for an in depth explanation on the tuning and design choices. The numerical values of

the parameters are given in Table 4.

Table 4: Parameters of the TMD/NES for the 60 DOF building.

ma[kg] ca[Ns/m] ka[N/m] cna[Ns/m] kna[N/m]

3.60 · 105 2.07 · 103 4.45 · 105 5.00 · 104 1.53 · 1011

The 2%-settling times of each of the vibration mitigation methods discussed can be
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found in Table 5. Notice that the VMS controllers are again able to decrease the settling

time significantly. For the NES the same observation can be made as in the 4 DOF

case. The NES does not result in a relevant improvement, due to the lack of energy it

observes at the lowest floor. The TMD is not able to obtain the same improvement as the

VMS controller. However, the TMD is still able to reduce the settling time significantly

compared to the uncontrolled/NES case.

Table 5: 2%-settling times [s] of the top floor q60 for the 60 DOF building

original system
VMS

(N1 = 1289.9730)
VMS

(N1 = 1780.1628) TMD NES

q4 702.41 343.03 288.70 561.13 702.41

4.4. Robustness

The same methodology as in the 4 DOF case has been used. Figure 15 represents the

robustness to model errors. The floors’ mass has been changed by ±10%, thus, altering

the eigenfrequencies of the structure. Again, the effect of matching the eigenfrequencies

is very important for the VMS controllers, as for the TMD. When this property is not

fulfilled, the controllers’ performance drop. The VMS is very capable of transferring the

energy of the top floor to the bottom floor using this beating phenomenon. The TMD

is also capable to transfer some energy, but not as effectively, as opposed to the 4 DOF

building example. The TMD struggles with a longer energy transfer path. The NES is

not able to improve the settling time of the building compared to the uncontrolled case.

This is for the same reason as in the 4 DOF building example: there is not enough energy

of the first vibration mode present in the first floor, due to the long transfer path from

the impact location (top floor) to the controller location (bottom floor).

5. Discussion

5.1. Interpretation of control policy

The control strategy proposed in this paper proves its merits for vibration mitigation

in building structures. The key lies in capturing the dominant mode of the main system.

26



Figure 15: Number of fundamental periods until 98% energy dissipated for different vibration control

strategies with model errors for the 60 DOF case study.

Due to the addition of the VMS controller, and especially due to the unique coupling

between the VMS and the main system, a new mode, where only z vibrates, is imposed

on the system. Because of the choice of the coupling term N1, this new mode has an

eigenfrequency close to that of the dominant mode of the main system. Hence, the energy

of the latter mode can be attracted to the VMS by exploiting the beating phenomenon,

even though only one generalised coordinate is actuated.

5.2. Controller parameters

In order to create the desired behaviour, K0 is chosen to match the eigenfrequency

of the VMS to that of the main system (see (24)), analogous to a TMD. The coupling

terms ν and N , are chosen as ν = −NT to guarantee stability, and as such form a skew-

symmetric interconnection matrix. This means gyroscopic forces are introduced in the

controlled system. By varying N , the position of the poles in the complex plane can be

influenced. By applying (25), the two dominant pole pairs of the controlled system lie

close together. As their eigenfrequencies only differ slightly, a beating phenomenon arises

between the generalised coordinates of the main system and the virtual coordinate. One

can furthermore choose to optimise the value of N depending on the application. The

optimisation criterion in this work is the 2%-settling time of the generalised coordinates
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of the main system. In case an optimisation is executed, (25) offers a good starting

point. The two pole pairs and the N region that needs to be explored are known, which

substantially simplifies the optimisation process.

The further the pole pairs are separated, the higher the beating frequency, to some

extent (see (27)). The trade-off here lies in the fact that a higher beating frequency leads

to faster energy transfer, however it has a technical drawback. The switching time of the

damping tswitch in (34) is estimated based on the envelope of the time response, which

is calculated online. A beating signal contains two frequencies: first, the beat frequency

(27), which is a periodic amplitude modulation, and, second, the higher vibrational

frequency

fv =
fp + fc

2
. (40)

The ratio of the vibrational frequency over the beat frequency is a measure of the time

resolution for the envelope estimation. The higher the ratio, the more peaks in the fast

periodic signal to estimate the slower beat frequency are present. In the case that we

assume that fc = fp − σ, with σ ∈ R>0, the ratio is given by:

fp + fc
|fp − fc|

=

∣∣∣∣2fpσ − 1

∣∣∣∣ . (41)

This means that if the poles are further separated, that σ increases, which means that

the ratio drops for σ ∈ ]0, 2fp]. Hence, there are less peaks of the vibrational signal in

one period of a beat. This leads to a less accurate estimate of the envelope, and, thus, of

the switching time of the damping. However, if enough damping is present in the main

system, the energy that is not captured by the VMS can be dissipated by the damping

in the main structure (see 4 DOF benchmark, Figures 8a and 8b).

A big merit of this active control strategy, is that the damping force can be chosen

freely, within the conditions formulated in the stability proof in Section 2.1.1. This

is taken advantage of to allow energy attraction towards the controller, while energy

transfer back to the main system is inhibited.

5.3. Comparison to TMD and NES

When comparing the performance of the VMS control strategy to the TMD and NES,

following remarks can be made.
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In Figure 10, for the 4DOF building, one can see that the NES is able to withdraw

energy from the main system initially, but from 5s onwards the decay is mainly due to

the internal damping of the main system. The TMD has an exponential decay until

the end, and is able to mitigate the vibrations quickly. However, the VMS is able to

remove the vibrational energy much faster compared to the passive solutions. For the

60 DOF building, in Figure 14, the NES is still not able to decrease the settling time,

and the TMD struggles to capture all the energy present in the building, because of the

longer energy transfer path in this case study. After all, this leads to a smaller relative

displacement between the additional structure and the controlled floor. The VMS keeps

outperforming the passive solutions with a 60% faster settling time compared to the

uncontrolled building. Hence, the introduction of the beating phenomenon as a tuning

strategy is robust to longer energy transfer paths. The NES initially gets more energy

out of the system than the TMD, as its nonlinear stiffness allows it to capture multiple

frequencies, as is visible in Figure 9. The underperformance of the passive devices can

also be contributed to the fact that they exert a force that depends on the relative

displacement between q1 and the absorber. This offers a challenge as q1 has the smallest

amplitude when the load is applied to the top floor qn, and the first vibrational mode is

dominant.

From the robustness studies in Figure 11a and 15 for the 4 DOF and 60 DOF building

respectively, it is clear that the VMS and TMD are tuned to a specific frequency. The

efficacy diminishes significantly if the mass of the building’s floors is changed, which

leads to a shift of the buildings first eigenfrequency. The NES is almost insensitive to

this change in eigenfrequency, but is affected by the size of the impact force. Further one

can note that the VMS shows its merits more profoundly compared to the TMD in the 60

DOF case, while 4 DOF case this is less pronounced. However, in the 60 DOF building

case, from 2% mass change the TMD, NES and VMS perform equally bad, but it should

be noted that the VMS is an active controller. Hence, updating the eigenfrequency of the

virtual system is merely an adaption of the programmed values, opposed to the passive

solutions, where a new mechanical design is necessary.
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6. Conclusion

In this study, an active control policy is proposed, inspired by passive vibration ab-

sorbers, but with more freedom in the coupling of the systems. The stability of the

controlled system is investigated using Lyapunov’s direct method. Considering the sta-

bility conditions and a modal approximation of the main system, a tuning method for

the controller parameters is put forward. Furthermore, in a 4 DOF and 60 DOF bench-

mark the performance is investigated with respect to the TMD and NES. Here, the VMS

succeeded in decreasing the settling time with approximately 60% in both cases. The

TMD achieved a reduction of 40% in the 4 DOF case and of 20% in the 60 DOF case.

The NES did not improve the settling time for both benchmarks, due to the fact that

the energy of the first vibrational mode at its attachment location is too low. The TMD

struggles with a longer energy transfer path, while the VMS is more capable of dealing

with taller structures, and thus a longer energy transfer path.

This strategy, based on a VMS, effectively mitigates vibrations in n DOF structures.

The key to the success of this approach lies in the specific tuning of the parameters,

which causes a beating phenomenon to arise. This is a consequence of the unique coupling

between the VMS and the main structure. Taking advantage of this beating phenomenon,

the energy is effectively attracted to the VMS, while only actuating at one coordinate,

which is moreover the furthest from the source. Finally, the freedom provided by the

use of a VMS allows for nonlinear damping for targeted energy dissipation. A damping

is proposed based on the (estimate of) the envelope of the virtual coordinate, which is

switched on once the maximum is reached. It is shown that a relatively bad estimate of

this switching time still results in a good performance.

This research has contributed new knowledge to the field by, first, providing a set of

stable active controllers that allow for intuitive tuning and, second, proposing a tuning

method that effectively causes energy to be attracted from all generalised coordinates to

the point where it can be dissipated.

References

[1] Z. A. B. Ahmad, K. H. Hui, M. H. Lim, M. S. Leong, Building floor vibration due to in-building

speed bump, Journal of Performance of Constructed Facilities 32 (4) (2018).

30



[2] W. B. Bao, Y. Y. Hu, Y. Cui, Wind loads simulation of tall building structures subjected to

wind-structure interaction, Advanced Materials Research 163–167 (2010) 4286–4289.

[3] F. Yoshiyuki, T. Izuru, Critical earthquake input energy to connected structures using impulse

input, Earthquakes and Structures 9 (6) (2015) 1133–1152.

[4] C. R. Ashokkumar, Vibration control for structural damage mitigation, Journal of Vibration and

Control 21 (15) (2015) 2995–3006.

[5] M. Sheehan, Everyday verticality: Migrant experiences of high-rise living in santiago, chile, Urban

Studies (2022).

[6] T. Kalaycioglu, H. N. Ozguven, Harmonic response of large engineering structures with nonlinear

modifications, in: G. DeRoeck, G. Degrande, G. Lombaert, G. Muller (Eds.), Proceedings of the

8th International Conference on Structural Dynamics, EURODYN 2011, 2011, pp. 3623–3629.

[7] D. T. R. Pasala, A. A. Sarlis, S. Nagarajaiah, A. M. Reinhorn, M. C. Constantinou, D. Taylor,

Adaptive negative stiffness: New structural modification approach for seismic protection, Journal

of Structural Engineering 139 (7) (2013) 1112–1123.

[8] M. Sen, O. Cakar, A new method for reducing the number of resonance frequencies of mechani-

cal systems within a specified frequency range with inverse structural modification and pole-zero

cancellation, Journal of Vibration and Control (2023). doi:10.1177/10775463231205353.
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[15] Chesné, Simon, Hybrid skyhook mass damper, Mechanics & Industry 22 (2021) 49.

[16] L. Koutsoloukas, N. Nikitas, P. Aristidou, Passive, semi-active, active and hybrid mass dampers:

A literature review with associated applications on building-like structures, Developments in the

Built Environment 12 (2022) 100094.

[17] M. H. El Ouni, M. Abdeddaim, S. Elias, N. B. Kahla, Review of vibration control strategies of

high-rise buildings, Sensors 22 (21) (2022) 8581.

[18] J. Juchem, M. Loccufier, Vibration control of underactuated mechanical systems with non-linear

euler-lagrange control, in: Proceedings of the European Control Conference 2023, ECC23, 2023,

31

https://doi.org/10.1177/10775463231205353


pp. 282–287.

[19] M. L. Adams, M. Rashidi, On the use of rotor-bearing instability threshold to accurately measure

bearing rotordynamic properties, Journal of Vibration, Accoustics, Stress, and Reliability in Design

107 (1985) 404–409.

[20] J. Yuan, S. Fei, Y. Chen, Technical note: On the actuator rate limit effect in reaction curves, ISA

Transactions 117 (2021) 303–308.

[21] B. G. Korenev, L. M. Reznikov, Dynamic vibration absorbers: theory and technical applications,

Wiley, 1993.

[22] T. Asami, O. Nishihara, A. M. Baz, Analytical Solutions to H∞ and H2 Optimization of Dynamic

Vibration Absorbers Attached to Damped Linear Systems , Journal of Vibration and Acoustics

124 (2) (2002) 284–295.

[23] K. Dekemele, R. De Keyser, M. Loccufier, Performance measures for targeted energy transfer and

resonance capture cascading in nonlinear energy sinks, Nonlinear Dynamics 93 (2018) 259–284.

[24] K. Dekemele, G. Habib, Inverted resonance capture cascade: modal interactions of a nonlinear

energy sink with softening stiffness, Nonlinear Dynamics (2023) 1–23.

[25] K. Dekemele, Performance measures for nonlinear energy sinks in mitigating single and multi-mode

vibrations: theory, simulation and implementation, Ph.D. thesis, Ghent University (2021).

[26] K. S. Moon, Vertically distributed multiple tuned mass dampers in tall buildings: performance

analysis and preliminary design, The Structural Design of Tall and Special Buildings 19 (3) (2010)

347–366.

32


	Introduction
	Methodology
	Virtual mechanical system
	Stability
	Single degree of freedom controllers
	Tuning
	Damping


	Example - 4 DOF building
	Virtual mechanical system
	Modal system approximation
	Nonlinear damping
	TMD/NES
	Robustness

	Examples - 60 DOF building
	Virtual mechanical system and modal system approximation
	Nonlinear damping
	TMD/NES
	Robustness

	Discussion
	Interpretation of control policy
	Controller parameters
	Comparison to TMD and NES

	Conclusion

